On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations

A. Agrachev; S. Kuksin; A. Sarychev; A. Shirikyan

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 4, page 399-415
  • ISSN: 0246-0203

How to cite

top

Agrachev, A., et al. "On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 399-415. <http://eudml.org/doc/77940>.

@article{Agrachev2007,
author = {Agrachev, A., Kuksin, S., Sarychev, A., Shirikyan, A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {2D Navier-Stokes system; analytic transformations; random perturbations},
language = {eng},
number = {4},
pages = {399-415},
publisher = {Elsevier},
title = {On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations},
url = {http://eudml.org/doc/77940},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Agrachev, A.
AU - Kuksin, S.
AU - Sarychev, A.
AU - Shirikyan, A.
TI - On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 399
EP - 415
LA - eng
KW - 2D Navier-Stokes system; analytic transformations; random perturbations
UR - http://eudml.org/doc/77940
ER -

References

top
  1. [1] A.A. Agrachev, A.V. Sarychev, Navier–Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech.7 (1) (2005) 108-152. Zbl1075.93014
  2. [2] A.A. Agrachev, A.V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Comm. Math. Phys.265 (2006) 673-697. Zbl1105.93008
  3. [3] V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
  4. [4] V. Bally, E. Pardoux, Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal.9 (1) (1998) 27-64. Zbl0928.60040MR1644120
  5. [5] P. Constantin, C. Foias, Navier–Stokes Equations, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071
  6. [6] R.C. Dalang, N.E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab.26 (1) (1998) 187-212. Zbl0938.60046MR1617046
  7. [7] S. Dineen, Zero one laws for probability measures on locally convex spaces, Math. Ann.243 (2) (1979) 95-102. Zbl0393.60030MR543719
  8. [8] J.-P. Eckmann, M. Hairer, Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys.219 (2001) 523-565. Zbl0983.60058MR1838749
  9. [9] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, New York, 1971. Zbl0219.60003MR270403
  10. [10] F. Flandoli, Dissipativity and invariant measures for stochastic Navier–Stokes equations, NoDEA1 (1994) 403-426. Zbl0820.35108
  11. [11] I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes. I, Springer-Verlag, Berlin, 1980. Zbl0531.60001MR636254
  12. [12] R.Z. Has′minskiĭ, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. 
  13. [13] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
  14. [14] S.B. Kuksin, Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.)117 (159) (1982) 359-378, 431. Zbl0501.35046MR648413
  15. [15] J.A. León, D. Nualart, R. Pettersson, The stochastic Burgers equation: finite moments and smoothness of the density, Infin. Dimens. Anal. Quantum Probab. Relat. Top.3 (3) (2000) 363-385. Zbl0968.60057MR1811248
  16. [16] J. Mattingly, E. Pardoux, Malliavin calculus for the stochastic 2D Navier–Stokes equation, Comm. Pure Appl. Math.59 (12) (2006) 1742-1790. Zbl1113.60058
  17. [17] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995. Zbl0837.60050MR1344217
  18. [18] D. Ocone, Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal.79 (2) (1988) 288-331. Zbl0653.60046MR953905
  19. [19] S. Sternberg, Lectures on Differential Geometry, Chelsea Publishing Co., New York, 1983. Zbl0518.53001MR891190
  20. [20] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. Zbl0426.35003
  21. [21] M.I. Vishik, A.V. Fursikov, Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. Zbl0688.35077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.