On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations
A. Agrachev; S. Kuksin; A. Sarychev; A. Shirikyan
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 4, page 399-415
- ISSN: 0246-0203
Access Full Article
topHow to cite
topAgrachev, A., et al. "On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 399-415. <http://eudml.org/doc/77940>.
@article{Agrachev2007,
author = {Agrachev, A., Kuksin, S., Sarychev, A., Shirikyan, A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {2D Navier-Stokes system; analytic transformations; random perturbations},
language = {eng},
number = {4},
pages = {399-415},
publisher = {Elsevier},
title = {On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations},
url = {http://eudml.org/doc/77940},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Agrachev, A.
AU - Kuksin, S.
AU - Sarychev, A.
AU - Shirikyan, A.
TI - On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 399
EP - 415
LA - eng
KW - 2D Navier-Stokes system; analytic transformations; random perturbations
UR - http://eudml.org/doc/77940
ER -
References
top- [1] A.A. Agrachev, A.V. Sarychev, Navier–Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech.7 (1) (2005) 108-152. Zbl1075.93014
- [2] A.A. Agrachev, A.V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Comm. Math. Phys.265 (2006) 673-697. Zbl1105.93008
- [3] V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
- [4] V. Bally, E. Pardoux, Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal.9 (1) (1998) 27-64. Zbl0928.60040MR1644120
- [5] P. Constantin, C. Foias, Navier–Stokes Equations, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071
- [6] R.C. Dalang, N.E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab.26 (1) (1998) 187-212. Zbl0938.60046MR1617046
- [7] S. Dineen, Zero one laws for probability measures on locally convex spaces, Math. Ann.243 (2) (1979) 95-102. Zbl0393.60030MR543719
- [8] J.-P. Eckmann, M. Hairer, Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys.219 (2001) 523-565. Zbl0983.60058MR1838749
- [9] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, New York, 1971. Zbl0219.60003MR270403
- [10] F. Flandoli, Dissipativity and invariant measures for stochastic Navier–Stokes equations, NoDEA1 (1994) 403-426. Zbl0820.35108
- [11] I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes. I, Springer-Verlag, Berlin, 1980. Zbl0531.60001MR636254
- [12] R.Z. Has′minskiĭ, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
- [13] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
- [14] S.B. Kuksin, Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.)117 (159) (1982) 359-378, 431. Zbl0501.35046MR648413
- [15] J.A. León, D. Nualart, R. Pettersson, The stochastic Burgers equation: finite moments and smoothness of the density, Infin. Dimens. Anal. Quantum Probab. Relat. Top.3 (3) (2000) 363-385. Zbl0968.60057MR1811248
- [16] J. Mattingly, E. Pardoux, Malliavin calculus for the stochastic 2D Navier–Stokes equation, Comm. Pure Appl. Math.59 (12) (2006) 1742-1790. Zbl1113.60058
- [17] D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995. Zbl0837.60050MR1344217
- [18] D. Ocone, Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal.79 (2) (1988) 288-331. Zbl0653.60046MR953905
- [19] S. Sternberg, Lectures on Differential Geometry, Chelsea Publishing Co., New York, 1983. Zbl0518.53001MR891190
- [20] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. Zbl0426.35003
- [21] M.I. Vishik, A.V. Fursikov, Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. Zbl0688.35077
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.