Displaying similar documents to “On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations”

A lattice gas model for the incompressible Navier–Stokes equation

J. Beltrán, C. Landim (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.

Some results on invariant measures in hydrodynamics

B. Ferrario (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

In questa nota, si presentano risultati di esistenza e di unicità di misure invarianti per l'equazione di Navier-Stokes che governa il moto di un fluido viscoso incomprimibile omogeneo in un dominio bidimensionale soggetto a una forzante che ha due componenti: una deterministica e una di tipo rumore bianco nella variabile temporale.

Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan (2005-2006)

Séminaire Équations aux dérivées partielles

Similarity:

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly...

The resolution of the Navier-Stokes equations in anisotropic spaces.

Dragos Iftimie (1999)

Revista Matemática Iberoamericana

Similarity:

In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H in the i-th direction, δ + δ + δ = 1/2, -1/2 < δ < 1/2 and in a space which is L in the first two directions and B in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.