On tails of stationary measures on a class of solvable groups

Dariusz Buraczewski[1]

  • [1] Uniwersytet Wroclawski, Instytut Matematyczny, Plac Grunwaldzki 2/4, 50-384 Wroclaw, (Pologne)

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 4, page 417-440
  • ISSN: 0246-0203

How to cite

top

Buraczewski, Dariusz. "On tails of stationary measures on a class of solvable groups." Annales de l'I.H.P. Probabilités et statistiques 43.4 (2007): 417-440. <http://eudml.org/doc/77941>.

@article{Buraczewski2007,
affiliation = {Uniwersytet Wroclawski, Instytut Matematyczny, Plac Grunwaldzki 2/4, 50-384 Wroclaw, (Pologne)},
author = {Buraczewski, Dariusz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {solvable Lie groups; stationary measure; Poisson kernel},
language = {eng},
number = {4},
pages = {417-440},
publisher = {Elsevier},
title = {On tails of stationary measures on a class of solvable groups},
url = {http://eudml.org/doc/77941},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Buraczewski, Dariusz
TI - On tails of stationary measures on a class of solvable groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 4
SP - 417
EP - 440
LA - eng
KW - solvable Lie groups; stationary measure; Poisson kernel
UR - http://eudml.org/doc/77941
ER -

References

top
  1. [1] R. Azencott, E. Wilson, On homogeneous manifolds with negative curvature, part I, Trans. Amer. Math. Soc.215 (1976) (1976) 323-362. Zbl0293.53017MR394507
  2. [2] D. Buraczewski, E. Damek, Y. Guivarc'h, A. Hulanicki, R. Urban, On tail properties of stochastic recursions connected with generalized rigid motions, preprint. 
  3. [3] D. Buraczewski, E. Damek, A. Hulanicki, Asymptotic behavior of Poisson kernels NA group, Comm. Partial Differential Equations31 (2006) 1547-1589. Zbl1109.22005MR2273965
  4. [4] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math.89 (1988) 169-196. Zbl0675.22005MR955662
  5. [5] E. Damek, A. Hulanicki, Boundaries for leftinvariant subelliptic operators on semidirect products of nilpotent and Abelian groups, J. Reine Angew. Math.411 (1990) 1-38. Zbl0699.22012MR1072971
  6. [6] E. Damek, A. Hulanicki, Asymptotic behavior of the invariant measure for a diffusion related to a NA group, Colloq. Math.104 (2006) 285-309. Zbl1087.22006MR2197079
  7. [7] B. de Saporta, Y. Guivarc'h, E. Le Page, On the multidimensional stochastic equation Y n + 1 = A n Y n + B n , C. R. Math. Acad. Sci. Paris339 (7) (2004) 499-502. Zbl1063.60099MR2099549
  8. [8] J. Faraut, A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994. Zbl0841.43002MR1446489
  9. [9] W. Feller, An Introduction to Probability Theory and its Application II, John Wiley and Sons, New York, 1966. Zbl0138.10207MR210154
  10. [10] G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, NJ, 1982. Zbl0508.42025MR657581
  11. [11] Ch.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab.1 (1) (1991) 126-166. Zbl0724.60076MR1097468
  12. [12] A.K. Grincevičius, On limit distribution for a random walk on the line, Lithuanian Math. J.15 (1975) 580-589. Zbl0373.60009
  13. [13] A.K. Grincevičius, Products of random affine transformations, Lithuanian Math. J.20 (1980) 279-282. Zbl0472.60035MR605960
  14. [14] Y. Guivarc'h, Heavy tail properties of multidimensional stochastic recursions, in: Dynamics & Stochastic, IMS Lecture Notes Monograph Series, vol. 48, 2006, pp. 85-99. Zbl1126.60052MR2306191
  15. [15] W. Hebisch, A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math.96 (3) (1990) 231-236. Zbl0723.22007MR1067309
  16. [16] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann.211 (1974) 23-34. Zbl0273.53042MR353210
  17. [17] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math.131 (1973) 207-248. Zbl0291.60029MR440724
  18. [18] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, Ann. Appl. Probab.14 (2) (2004) 971-1005. Zbl1094.62114MR2052910
  19. [19] É. Le Page, Théorème de renouvellement pour les produits de matrices aléatoires et les équations aux différences aléatoires, in: Séminaires de probabilités Rennes 1983, Univ. Rennes I, Rennes, 1983, 116 pp. MR863321
  20. [20] I.I. Piatetski-Shapiro, Geometry of Classical Domains and Theory of Automorphic Functions, Sovremennye Problemy Matematiki, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961. Zbl0137.27502MR136770
  21. [21] A. Raugi, Fonctions harmoniques sur les groupes localment compact a base denomerable, Bull. Soc. Math. France Mém.54 (1977) 5-118. Zbl0389.60003MR517392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.