Almost-sure path properties of fractional brownian sheet

Wensheng Wang

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 5, page 619-631
  • ISSN: 0246-0203

How to cite

top

Wang, Wensheng. "Almost-sure path properties of fractional brownian sheet." Annales de l'I.H.P. Probabilités et statistiques 43.5 (2007): 619-631. <http://eudml.org/doc/77948>.

@article{Wang2007,
author = {Wang, Wensheng},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Gaussian process; fractional Brownian sheet; modulus of continuity; law of the iterated logarithm},
language = {eng},
number = {5},
pages = {619-631},
publisher = {Elsevier},
title = {Almost-sure path properties of fractional brownian sheet},
url = {http://eudml.org/doc/77948},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Wang, Wensheng
TI - Almost-sure path properties of fractional brownian sheet
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 5
SP - 619
EP - 631
LA - eng
KW - Gaussian process; fractional Brownian sheet; modulus of continuity; law of the iterated logarithm
UR - http://eudml.org/doc/77948
ER -

References

top
  1. [1] E. Belinsky, W. Linde, Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theor. Probab.15 (2002) 589-612. Zbl1040.60028MR1922439
  2. [2] E. Csáki, M. Csörgő, Q.-M. Shao, Fernique type inequalities and moduli of continuity for l 2 -valued Ornstein–Uhlenbeck processes, Ann. Inst. H. Poincaré Probab. Statist.28 (1992) 479-517. Zbl0762.60028
  3. [3] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
  4. [4] T. Dunker, Estimates for the small probabilities of the fractional Brownian sheet, J. Theor. Probab.13 (2000) 357-382. Zbl0971.60041MR1777539
  5. [5] W. Ehm, Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete96 (1981) 195-228. Zbl0471.60046MR618272
  6. [6] C. Lu, Y. Wang, L.-X. Zhang, On large increments of a two-parameter fractional Wiener process, Sci. China51 (2001) 215-223. Zbl0997.60029
  7. [7] D.M. Mason, Z. Shi, Small deviations for some multi-parameter Gaussian processes, J. Theor. Probab.14 (2001) 213-239. Zbl0982.60024MR1822902
  8. [8] D. Monrad, H. Rootzén, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Theory Rel. Fields101 (1995) 173-192. Zbl0821.60043MR1318191
  9. [9] S. Orey, W.E. Pruitt, Sample functions of the N-parameter Wiener process, Ann. Probab.1 (1973) 138-163. Zbl0284.60036MR346925
  10. [10] J. Ortega, On the size of the increments of non-stationary Gaussian processes, Stoch. Process. Appl.18 (1984) 47-56. Zbl0546.60030MR757346
  11. [11] W.J. Park, A multi-parameter Gaussian process, Ann. Math. Statist.41 (1970) 1582-1595. Zbl0279.60030MR272044
  12. [12] R. Pyke, Partial sums of matrix arrays and Brownian sheet, in: Harding E.F., Kendall D.G. (Eds.), Stochastic Analysis, Wiley, New York, 1972, pp. 331-348. MR370743
  13. [13] M. Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion, Probab. Theory Rel. Fields112 (1998) 545-563. Zbl0928.60026MR1664704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.