Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential
Mustapha Mourragui; Enza Orlandi
Annales de l'I.H.P. Probabilités et statistiques (2007)
- Volume: 43, Issue: 6, page 677-715
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMourragui, Mustapha, and Orlandi, Enza. "Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential." Annales de l'I.H.P. Probabilités et statistiques 43.6 (2007): 677-715. <http://eudml.org/doc/77951>.
@article{Mourragui2007,
author = {Mourragui, Mustapha, Orlandi, Enza},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Kawasaki dynamics; random environment; Kac potential; non-gradient systems; large deviations; lattice gas; Kac's type interaction; large deviations principle; empirical measures},
language = {eng},
number = {6},
pages = {677-715},
publisher = {Elsevier},
title = {Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential},
url = {http://eudml.org/doc/77951},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Mourragui, Mustapha
AU - Orlandi, Enza
TI - Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 6
SP - 677
EP - 715
LA - eng
KW - Kawasaki dynamics; random environment; Kac potential; non-gradient systems; large deviations; lattice gas; Kac's type interaction; large deviations principle; empirical measures
UR - http://eudml.org/doc/77951
ER -
References
top- [1] M. Aizenman, J. Wehr, Rounding of first order phase transitions in systems with quenched disorder, Comm. Math. Phys.130 (1990) 489-528. Zbl0714.60090MR1060388
- [2] A. Asselah, G. Giacomin, Metastability for the exclusion process with mean-field interaction, J. Stat. Phys.93 (5/6) (1998) 1051-1110. Zbl0963.82032MR1666212
- [3] L. Bertini, Dynamic fluctuations for Kac and related models, Markov Process. Related Fields8 (2) (2002) 365-379. Zbl1103.82307MR1924945
- [4] J. Bricmont, A. Kupiainen, Phase transition in the three-dimensional random field Ising model, Comm. Math. Phys.116 (1988) 539-572. Zbl1086.82573MR943702
- [5] M. Cassandro, E. Orlandi, P. Picco, Typical configurations for one-dimensional random field Kac model, Ann. Probab.27 (3) (1999) 1414-1467. Zbl0983.60091MR1733155
- [6] M. Cassandro, E. Orlandi, P. Picco, M.E. Vares, Typical configurations for one-dimensional random field Kac model: localization of the phases, Electronic J. Probab.10 (2005) 786-864. Zbl1109.60079MR2164031
- [7] A. De Masi, E. Orlandi, L. Triolo, E. Presutti, Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity7 (1996) 287-301. Zbl0797.60088MR1275526
- [8] A. Faggionato, F. Martinelli, Hydrodynamic limit of a disordered lattice gas, Probab. Theory Related Fields127 (4) (2003) 535-608. Zbl1052.60083MR2021195
- [9] G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction. I. Macroscopic limits, J. Stat. Phys.87 (1997) 37-61. Zbl0937.82037MR1453735
- [10] G. Giacomin, J.L. Lebowitz, R. Marra, Macroscopic evolution of particle systems with short- and long-range interactions, Nonlinearity13 (2000) 2143-2162. Zbl0999.82051MR1794850
- [11] G. Giacomin, J.L. Lebowitz, E. Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, in: Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., vol. 64, American Mathematical Society, Providence, RI, 1999. Zbl0927.60060MR1661764
- [12] M. Kac, G. Uhlenbeck, P.C. Hemmer, On the van der Waals theory of vapour–liquid equilibrium. I. Discussion of a one-dimensional model, J. Math. Phys.4 (1963) 216-228. Zbl0938.82517
- [13] K.W. Kehr, T. Wichmann, Pekalski A. (Ed.), Diffusion Processes: Experiment, Theory, Simulations, Lecture Notes in Physics, vol. 438, Springer, 1994.
- [14] C. Kipnis, C. Landim, Hydrodynamic Limit of Interacting Particle Systems, Springer-Verlag, 1999. Zbl0927.60002
- [15] C. Kipnis, S. Olla, S.R.S. Varadhan, Hydrodynamic and large deviations for simple exclusion process, Comm. Pure Appl. Math.42 (1989) 115-137. Zbl0644.76001MR978701
- [16] T. Liggett, Interacting Particles Systems, Springer, Berlin, 1985. Zbl0559.60078
- [17] J.L. Lebowitz, E. Orlandi, E. Presutti, A particle model for spinodal decomposition, J. Stat. Phys.63 (1991) 933-974. MR1116042
- [18] J. Lebowitz, O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid–vapour transition, J. Math. Phys.7 (1966) 98-113. Zbl0938.82520
- [19] O.A. Ladyzenskaja, N.N. Uralceva, Equations aux derivées partielles de type elliptique, Editions Nauka, Moscou, 1964.
- [20] R. Marra, M. Mourragui, Phase segregation dynamics for the Blume–Capel model with Kac interaction, Stochastic Process. Appl.88 (2000) 79-124. Zbl1045.60106
- [21] M. Mourragui, E. Orlandi, E. Saada, Macroscopic evolution of particles systems with random field Kac interactions, Nonlinearity16 (2003) 2123-2147. Zbl1051.60096MR2012860
- [22] T. Nattermann, Theory of the random field Ising model, in: Young P. (Ed.), Spin Glasses and Random Fields, World Scientific, 1997.
- [23] E. Presutti, From Statistical Mechanics towards Continuum Mechanics, Notes of lectures held at the Max-Planck Institute, Leipzig, 1999.
- [24] J. Quastel, Diffusion in disordered media, in: Funaki T., Woyczinky W. (Eds.), Proceedings on Stochastic Method for Nonlinear PDE, IMA Volumes in Mathematics, vol. 77, Springer-Verlag, 1995, pp. 65-79. Zbl0840.60093MR1395893
- [25] J. Quastel, Large deviations from a hydrodynamic scaling limit for a nongradient system, Ann. Probab.23 (2) (1995) 724-742. Zbl0843.60087MR1334168
- [26] J. Quastel, F. Rezakhanlou, S.R.S. Varadhan, Large deviations for the symmetric simple exclusion process in dimension , Probab. Theory Related Fields113 (1999) 1-84. Zbl0928.60087MR1670733
- [27] J. Quastel, S.R.S. Varadhan, Diffusion semigroup and diffusion processes corresponding to degenerate divergence form operators, Comm. Pure Appl. Math. L (1997) 667-706. Zbl0907.47040MR1447057
- [28] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991. Zbl0742.76002
- [29] S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. II, in: Elworthy K., Ikeda N. (Eds.), Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals, Pitman Research Notes in Mathematics, vol. 283, Wiley, 1994. Zbl0793.60105MR1354152
- [30] S.R.S. Varadhan, H.T. Yau, Diffusive limit of lattice gas with mixing conditions, Asian J. Math.1 (1997) 623-678. Zbl0947.60089MR1621569
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.