An invariance principle for Azéma martingales

Nathanaël Enriquez

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 6, page 717-727
  • ISSN: 0246-0203

How to cite

top

Enriquez, Nathanaël. "An invariance principle for Azéma martingales." Annales de l'I.H.P. Probabilités et statistiques 43.6 (2007): 717-727. <http://eudml.org/doc/77952>.

@article{Enriquez2007,
author = {Enriquez, Nathanaël},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariance principle; Azéma martingales; structure equations},
language = {eng},
number = {6},
pages = {717-727},
publisher = {Elsevier},
title = {An invariance principle for Azéma martingales},
url = {http://eudml.org/doc/77952},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Enriquez, Nathanaël
TI - An invariance principle for Azéma martingales
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 6
SP - 717
EP - 727
LA - eng
KW - invariance principle; Azéma martingales; structure equations
UR - http://eudml.org/doc/77952
ER -

References

top
  1. [1] J. Azéma, Sur les fermés aléatoires, in: Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 397-495. Zbl0563.60038MR889496
  2. [2] J. Azéma, M. Yor, Étude d'une martingale remarquable, in: Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 88-130. Zbl0743.60045MR1022900
  3. [3] E.B. Dynkin, Some limit theorems for sums of independent random variables with infinite mathematical expectations, in: Select. Transl. Math. Statist. and Probability, vol. 1, Inst. Math. Statist. and Amer. Math. Soc., Providence, RI, 1961, pp. 171-189. Zbl0112.10105MR116376
  4. [4] M. Emery, On the Azéma martingales, in: Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 66-87. Zbl0753.60045MR1022899
  5. [5] M. Emery, Sur les martingales d'Azéma (suite), in: Séminaire de Probabilités, XXIV, 1988/89, Lecture Notes in Math., vol. 1426, Springer, Berlin, 1990, pp. 442-447. Zbl0712.60048MR1071559
  6. [6] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, second ed., John Wiley & Sons, New York, 1971. Zbl0219.60003MR270403
  7. [7] A. Jakubowski, J. Mémin, G. Pagès, Convergence en loi des suites d’intégrales stochastiques sur l’espace D 1 de Skorokhod, English summary, Probab. Theory Related Fields81 (1) (1989) 111-137. Zbl0638.60049MR981569
  8. [8] T. Kurtz, P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab.19 (3) (1991) 1035-1070. Zbl0742.60053MR1112406
  9. [9] R. Mansuy, M. Yor, Random times and enlargements of filtrations in a Brownian setting, Lecture Notes in Math., vol. 1873, Springer-Verlag, 2005. Zbl1103.60003MR2200733
  10. [10] P.-A. Meyer, Eléments de probabilités quantiques. I–V, in: Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math., vol. 1204, Springer, Berlin, 1986, pp. 186-312. Zbl0604.60001
  11. [11] P.-A. Meyer, Construction de solutions d'équations de structure, in: Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 142-145. Zbl0739.60050MR1022903
  12. [12] A. Phan, Martingales d'Azéma asymétriques. Description élémentaire et unicité, in: Séminaire de Probabilités, XXXV, Lecture Notes in Math., vol. 1755, Springer, Berlin, 2001, pp. 48-86. Zbl0982.60035MR1837276
  13. [13] P. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, vol. 21, second ed., Springer-Verlag, Berlin, 2004. Zbl1041.60005MR2020294
  14. [14] R. Rebolledo, La méthode des martingales appliquée à l'étude de la convergence en loi de processus, Bull. Soc. Math. France Mém.62 (1979), v+125 pp. Zbl0425.60036MR568153
  15. [15] M. Yor, Some Aspects of Brownian Motion. Part II. Some Recent Martingale Problems, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1997, xii+144 pp. Zbl0880.60082MR1442263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.