Estimation in models driven by fractional brownian motion
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 2, page 191-213
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBerzin, Corinne, and León, José R.. "Estimation in models driven by fractional brownian motion." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 191-213. <http://eudml.org/doc/77966>.
@article{Berzin2008,
abstract = {Let \{bH(t), t∈ℝ\} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ
x and μ(x)=μ or μ(x)=μ
x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅) in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.},
author = {Berzin, Corinne, León, José R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {central limit theorem; estimation; fractional brownian motion; gaussian processes; Hermite polynomials; Gaussian processes},
language = {eng},
number = {2},
pages = {191-213},
publisher = {Gauthier-Villars},
title = {Estimation in models driven by fractional brownian motion},
url = {http://eudml.org/doc/77966},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Berzin, Corinne
AU - León, José R.
TI - Estimation in models driven by fractional brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 191
EP - 213
AB - Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ
x and μ(x)=μ or μ(x)=μ
x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅) in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.
LA - eng
KW - central limit theorem; estimation; fractional brownian motion; gaussian processes; Hermite polynomials; Gaussian processes
UR - http://eudml.org/doc/77966
ER -
References
top- [1] J.-M. Azaïs and M. Wschebor. Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257–270. Zbl0885.60018MR1416866
- [2] C. Berzin and J. R. León. Convergence in fractional models and applications. Electron. J. Probab. 10 (2005) 326–370. Zbl1070.60022MR2120247
- [3] C. Berzin and J. R. León. Estimating the Hurst parameter. Stat. Inference Stoch. Process. 10 (2007) 49–73. Zbl1110.62110MR2269604
- [4] N. J. Cutland, P. E. Kopp and W. Willinger. Stock price returns and the Joseph effect: A fractional version of the Black–Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) 327–351. Switzerland. Zbl0827.60021MR1360285
- [5] L. Decreusefond and A. S. Üstünel. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177–214. Zbl0924.60034MR1677455
- [6] A. Gloter and M. Hoffmann. Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 143–172. Zbl1065.62179MR2078541
- [7] F. Klingenhöfer and M. Zähle. Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (1999) 1021–1028. Zbl0915.34054MR1486738
- [8] S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121–140. Zbl0886.60076MR1382288
- [9] T. Lyons. Differential equations driven by rough signals, I: An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994) 451–464. Zbl0835.34004MR1302388
- [10] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. Zbl0179.47801MR242239
- [11] D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2001) 55–81. Zbl1018.60057MR1893308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.