Estimation in models driven by fractional brownian motion

Corinne Berzin; José R. León

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 2, page 191-213
  • ISSN: 0246-0203

Abstract

top
Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ  x and μ(x)=μ or μ(x)=μ  x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅) in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.

How to cite

top

Berzin, Corinne, and León, José R.. "Estimation in models driven by fractional brownian motion." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 191-213. <http://eudml.org/doc/77966>.

@article{Berzin2008,
abstract = {Let \{bH(t), t∈ℝ\} be the fractional brownian motion with parameter 0&lt;H&lt;1. When 1/2&lt;H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ  x and μ(x)=μ or μ(x)=μ  x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅) in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.},
author = {Berzin, Corinne, León, José R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {central limit theorem; estimation; fractional brownian motion; gaussian processes; Hermite polynomials; Gaussian processes},
language = {eng},
number = {2},
pages = {191-213},
publisher = {Gauthier-Villars},
title = {Estimation in models driven by fractional brownian motion},
url = {http://eudml.org/doc/77966},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Berzin, Corinne
AU - León, José R.
TI - Estimation in models driven by fractional brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 191
EP - 213
AB - Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0&lt;H&lt;1. When 1/2&lt;H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ  x and μ(x)=μ or μ(x)=μ  x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅) in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.
LA - eng
KW - central limit theorem; estimation; fractional brownian motion; gaussian processes; Hermite polynomials; Gaussian processes
UR - http://eudml.org/doc/77966
ER -

References

top
  1. [1] J.-M. Azaïs and M. Wschebor. Almost sure oscillation of certain random processes. Bernoulli 2 (1996) 257–270. Zbl0885.60018MR1416866
  2. [2] C. Berzin and J. R. León. Convergence in fractional models and applications. Electron. J. Probab. 10 (2005) 326–370. Zbl1070.60022MR2120247
  3. [3] C. Berzin and J. R. León. Estimating the Hurst parameter. Stat. Inference Stoch. Process. 10 (2007) 49–73. Zbl1110.62110MR2269604
  4. [4] N. J. Cutland, P. E. Kopp and W. Willinger. Stock price returns and the Joseph effect: A fractional version of the Black–Scholes model. In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993) 327–351. Switzerland. Zbl0827.60021MR1360285
  5. [5] L. Decreusefond and A. S. Üstünel. Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177–214. Zbl0924.60034MR1677455
  6. [6] A. Gloter and M. Hoffmann. Stochastic volatility and fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 143–172. Zbl1065.62179MR2078541
  7. [7] F. Klingenhöfer and M. Zähle. Ordinary differential equations with fractal noise. Proc. Amer. Math. Soc. 127 (1999) 1021–1028. Zbl0915.34054MR1486738
  8. [8] S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121–140. Zbl0886.60076MR1382288
  9. [9] T. Lyons. Differential equations driven by rough signals, I: An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (1994) 451–464. Zbl0835.34004MR1302388
  10. [10] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. Zbl0179.47801MR242239
  11. [11] D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2001) 55–81. Zbl1018.60057MR1893308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.