An algebraic approach to Pólya processes
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 2, page 293-323
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPouyanne, Nicolas. "An algebraic approach to Pólya processes." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 293-323. <http://eudml.org/doc/77971>.
@article{Pouyanne2008,
abstract = {Pólya processes are natural generalizations of Pólya–Eggenberger urn models. This article presents a new approach of their asymptotic behaviour via moments, based on the spectral decomposition of a suitable finite difference transition operator on polynomial functions. Especially, it provides new results for large processes (a Pólya process is called small when 1 is a simple eigenvalue of its replacement matrix and when any other eigenvalue has a real part ≤1/2; otherwise, it is called large).},
author = {Pouyanne, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Pólya processes; Pólya–Eggenberger urn processes; strong asymptotics; finite difference transition operator; vector-valued martingale methods; Pólya-Eggenberger urn model; Pólya process; vector-valued martingale; transition operator; spectral decomposition},
language = {eng},
number = {2},
pages = {293-323},
publisher = {Gauthier-Villars},
title = {An algebraic approach to Pólya processes},
url = {http://eudml.org/doc/77971},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Pouyanne, Nicolas
TI - An algebraic approach to Pólya processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 293
EP - 323
AB - Pólya processes are natural generalizations of Pólya–Eggenberger urn models. This article presents a new approach of their asymptotic behaviour via moments, based on the spectral decomposition of a suitable finite difference transition operator on polynomial functions. Especially, it provides new results for large processes (a Pólya process is called small when 1 is a simple eigenvalue of its replacement matrix and when any other eigenvalue has a real part ≤1/2; otherwise, it is called large).
LA - eng
KW - Pólya processes; Pólya–Eggenberger urn processes; strong asymptotics; finite difference transition operator; vector-valued martingale methods; Pólya-Eggenberger urn model; Pólya process; vector-valued martingale; transition operator; spectral decomposition
UR - http://eudml.org/doc/77971
ER -
References
top- [1] K. B. Athreya and S. Karlin. Embedding of urn schemes into continuous time Markov branching processes and related limit theorems. Ann. Math. Statist. 39 (1968) 1801–1817. Zbl0185.46103MR232455
- [2] A. Bagchi and A. K. Pal. Asymptotic normality in the generalized Pólya–Eggenberger urn model, with an application to computer data structures. SIAM J. Algebraic Discrete Methods 6 (1985) 394–405. Zbl0568.60010MR791169
- [3] P. Billingsley. Probability and Measure. Probability and Mathematical Statistics, 2nd edition. Wiley, New York, 1986. Zbl0649.60001MR830424
- [4] B. Chauvin and N. Pouyanne. m-ary search trees when m≥27: a strong asymptotics for the space requirements. Random Structures Algorithms 24 (2004) 133–154. Zbl1037.60027MR2035872
- [5] H.-H. Chern and H.-K. Hwang. Phase changes in random m-ary search trees and generalized quicksort. Random Structures Algorithms 19 (2001) 316–358. Zbl0990.68052MR1871558
- [6] H.-H. Chern, M. Fuchs and H.-K. Hwang. Phase changes in random point quadtrees. ACM Trans. Algorithms 3 (2007) Art. 12. Zbl1321.68218MR2335295
- [7] F. Eggenberger and G. Pólya. Ueber die Statistik verketter Vorgänge. Z. Angew. Math. Mech. 1 (1923) 279–289. Zbl49.0382.01JFM49.0382.01
- [8] J. A. Fill and N. Kapur. The space requirements of m-ary search trees: distributional asymptotics for m≥27. Submitted. Available at http://arxiv.org/abs/math/0405144v1. Zbl1101.68018
- [9] P. Flajolet, J. Gabarró and H. Pekari. Analytic urns. Ann. Probab. 33 (2005) 1200–1233. Zbl1073.60007MR2135318
- [10] B. Friedman. A simple urn model. Comm. Pure Appl. Math. 2 (1949) 59–70. Zbl0033.07101MR30144
- [11] R. Gouet. Strong convergence of proportions in a multicolor Pòlya urn. J. Appl. Probab. 34 (1997) 426–435. Zbl0884.60028MR1447347
- [12] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA, 1995. Zbl0668.00003MR1397498
- [13] P. Hall and C. C. Heyde. Martingale Limit Theory and Its Applications. Academic Press, New York, 1980. Zbl0462.60045MR624435
- [14] S. Janson. Functional limit theorem for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 (2004) 177–245. Zbl1075.60109MR2040966
- [15] S. Janson. Congruence properties of depths in some random trees. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006) 347–366. Zbl1104.60300MR2249661
- [16] S. Janson. Limit theorems for triangular urn schemes. Probab. Theory Related Fields 134 (2005) 417–452. Zbl1112.60012MR2226887
- [17] G. Pólya. Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1930) 117–161. MR1507985JFM57.0610.02
- [18] N. Pouyanne. Classification of large Pólya–Eggenberger urns with regard to their asymptotics. In: Internat. Conf. on Analysis of Algorithms. Discrete Math. Theor. Comput. Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 275–285 (electronic). Zbl1096.60007MR2193125
- [19] V. Puyhaubert. Modèles d’urnes et phénomènes de seuils en combinatoire analytique. Thèse de l’Ecole Polytechnique. Available at http://www.imprimerie.polytechnique.fr/Theses/Files/Puyhaubert.pdf, 2005.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.