New M-estimators in semi-parametric regression with errors in variables

Cristina Butucea; Marie-Luce Taupin

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 3, page 393-421
  • ISSN: 0246-0203

Abstract

top
In the regression model with errors in variables, we observe n i.i.d. copies of (Y, Z) satisfying Y=fθ0(X)+ξ and Z=X+ɛ involving independent and unobserved random variables X, ξ, ɛ plus a regression function fθ0, known up to a finite dimensional θ0. The common densities of the Xi’s and of the ξi’s are unknown, whereas the distribution of ɛ is completely known. We aim at estimating the parameter θ0 by using the observations (Y1, Z1), …, (Yn, Zn). We propose an estimation procedure based on the least square criterion S ˜ θ 0 , g ( θ ) = 𝔼 θ 0 , g [ ( ( Y - f θ ( X ) ) 2 w ( X ) ] wherew is a weight function to be chosen. We propose an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density pɛ and on the smoothness properties of w(x)fθ(x). Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of w in the case of nonlinear regression functions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation procedure, in particular, when a choice of wθ depending on θ would be more appropriate.

How to cite

top

Butucea, Cristina, and Taupin, Marie-Luce. "New M-estimators in semi-parametric regression with errors in variables." Annales de l'I.H.P. Probabilités et statistiques 44.3 (2008): 393-421. <http://eudml.org/doc/77976>.

@article{Butucea2008,
abstract = {In the regression model with errors in variables, we observe n i.i.d. copies of (Y, Z) satisfying Y=fθ0(X)+ξ and Z=X+ɛ involving independent and unobserved random variables X, ξ, ɛ plus a regression function fθ0, known up to a finite dimensional θ0. The common densities of the Xi’s and of the ξi’s are unknown, whereas the distribution of ɛ is completely known. We aim at estimating the parameter θ0 by using the observations (Y1, Z1), …, (Yn, Zn). We propose an estimation procedure based on the least square criterion $\tilde\{S\}_\{\theta ^\{0\},g\}(\theta )=\mathbb \{E\}_\{\theta ^\{0\},g\}[((Y-f_\{\theta \}(X))^\{2\}w(X)]$ wherew is a weight function to be chosen. We propose an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density pɛ and on the smoothness properties of w(x)fθ(x). Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of w in the case of nonlinear regression functions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation procedure, in particular, when a choice of wθ depending on θ would be more appropriate.},
author = {Butucea, Cristina, Taupin, Marie-Luce},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {asymptotic normality; consistency; deconvolution kernel estimator; errors-in-variables model; M-estimators; ordinary smooth and super-smooth functions; rates of convergence; semi-parametric nonlinear regression},
language = {eng},
number = {3},
pages = {393-421},
publisher = {Gauthier-Villars},
title = {New M-estimators in semi-parametric regression with errors in variables},
url = {http://eudml.org/doc/77976},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Butucea, Cristina
AU - Taupin, Marie-Luce
TI - New M-estimators in semi-parametric regression with errors in variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 393
EP - 421
AB - In the regression model with errors in variables, we observe n i.i.d. copies of (Y, Z) satisfying Y=fθ0(X)+ξ and Z=X+ɛ involving independent and unobserved random variables X, ξ, ɛ plus a regression function fθ0, known up to a finite dimensional θ0. The common densities of the Xi’s and of the ξi’s are unknown, whereas the distribution of ɛ is completely known. We aim at estimating the parameter θ0 by using the observations (Y1, Z1), …, (Yn, Zn). We propose an estimation procedure based on the least square criterion $\tilde{S}_{\theta ^{0},g}(\theta )=\mathbb {E}_{\theta ^{0},g}[((Y-f_{\theta }(X))^{2}w(X)]$ wherew is a weight function to be chosen. We propose an estimator and derive an upper bound for its risk that depends on the smoothness of the errors density pɛ and on the smoothness properties of w(x)fθ(x). Furthermore, we give sufficient conditions that ensure that the parametric rate of convergence is achieved. We provide practical recipes for the choice of w in the case of nonlinear regression functions which are smooth on pieces allowing to gain in the order of the rate of convergence, up to the parametric rate in some cases. We also consider extensions of the estimation procedure, in particular, when a choice of wθ depending on θ would be more appropriate.
LA - eng
KW - asymptotic normality; consistency; deconvolution kernel estimator; errors-in-variables model; M-estimators; ordinary smooth and super-smooth functions; rates of convergence; semi-parametric nonlinear regression
UR - http://eudml.org/doc/77976
ER -

References

top
  1. [1] S. Baran. A consistent estimator in general functional errors-in-variables models. Metrika 51 (2000) 117–132 (electronic). Zbl1093.62552MR1790927
  2. [2] P. J. Bickel, A. J. C. Klaassen, Y. Ritov and J. A. Wellner. Efficient and Adaptative Estimation for Semiparametric Model. Johns Hopkins Univ. Press, Baltimore, MD, 1993. Zbl0786.62001MR1245941
  3. [3] Bickel, P. J. and A. J. C. Ritov. Efficient estimation in the errors-in-variables model. Ann. Statist. 15 (1987) 513–540. Zbl0643.62029MR888423
  4. [4] Billingsley, P.Probability and Measure, 3rd edition. Wiley. New York, 1995. Zbl0822.60002MR1324786
  5. [5] R. J. Carroll, D. Ruppert and L. A. Stefanski. Measurement Error in Nonlinear Models. Chapman and Hall, London, 1995. Zbl0853.62048MR1630517
  6. [6] L. K. Chan and T. K. Mak. On the polynomial functionnal relationship. J. Roy. Statist. Soc. Ser. B 47 (1985) 510–518. MR844482
  7. [7] C. H. Cheng and J. W. Van Ness. On estimating linear relationships when both variables are subject to errors. J. Roy. Statist. Soc. Ser. B 56 (1994) 167–183. Zbl0800.62453MR1257805
  8. [8] F. Comte and M.-L. Taupin. Semiparametric estimation in the (auto)-regressive β-mixing model with errors-in-variables. Math. Methods Statist. 10 (2001) 121–160. Zbl1005.62036MR1851745
  9. [9] I. Fazekas, S. Baran, A. Kukush, and J. Lauridsen. Asymptotic properties in space and time of an estimator in nonlinear functional errors-in-variables models. Random Oper. Stochastic Equations 7 (1999) 389–412. Zbl0953.62061MR1709899
  10. [10] I. Fazekas and A. G. Kukush. Asymptotic properties of estimators in nonlinear functional errors-in-variables with dependent error terms. J. Math. Sci. (New York) 92 (1998) 3890–3895. Zbl0919.62062MR1666219
  11. [11] M. V. Fedoryuk. Asimptotika: integraly i ryady. “Nauka”, Moscow, 1987. Zbl0641.41001MR950167
  12. [12] W. A. Fuller. Measurement Error Models. Wiley, New York, 1987. Zbl0800.62413MR898653
  13. [13] L. J. Gleser. Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. Contemp. Math. 112 (1990) 99–114. Zbl0722.62044MR1087101
  14. [14] J. A. Hausman, W. K. Newey, I. Ichimura and J. L. Powell. Identification and estimation of polynomial errors-in-variables models. J. Econometrics 50 (1991) 273–295. Zbl0745.62065MR1147115
  15. [15] J. A. Hausman, W. K. Newey and J. L. Powell. Nonlinear errors in variables estimation of some engel curves. J. Econometrics 65 (1995) 205–233. Zbl0825.62955MR1324193
  16. [16] H. Hong and E. Tamer. A simple estimator for nonlinear error in variable models. J. Econometrics 117 (2003) 1–19. Zbl1022.62047MR2002282
  17. [17] C. Hsiao. Consistent estimation for some nonlinear errors-in-variables models. J. Econometrics 41 (1989) 159–185. Zbl0705.62105MR1007729
  18. [18] C. Hsiao, L. Wang and Q. Wang. Estimation of nonlinear errors-in-variables models: an approximate solution. Statist. Papers 38 (1997) 1–25. Zbl0883.62066MR1474937
  19. [19] C. Hsiao and Q. K. Wang. Estimation of structural nonlinear errors-in-variables models by simulated least-squares method. Internat. Econom. Rev. 41 (2000) 523–542. MR1760462
  20. [20] J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27 (1956) 887–906. Zbl0073.14701MR86464
  21. [21] A. Kukush and H. Schneeweiss. Comparing different estimators in a nonlinear measurement error model. I. Math. Methods Statist. 14 (2005) 53–79. MR2158071
  22. [22] A. Kukush and H. Schneeweiss. Comparing different estimators in a nonlinear measurement error model. II. Math. Methods Statist. 14 (2005) 203–223. MR2160395
  23. [23] O. V. Lepski and B. Y. Levit. Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123–156. Zbl1103.62332MR1643256
  24. [24] T. Li. Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator. Statist. Probab. Lett. 47 (2000) 243–248. Zbl1054.62563MR1747484
  25. [25] T. Li. Robust and consistent estimation of nonlinear errors-in-variables models. J. Econometrics 110 (2002) 1–26. Zbl1030.62034MR1920960
  26. [26] S. A. Murphy and A. W. Van der Vaart. Likelihood inference in the errors-in-variables model. J. Multivariate Anal. 59 (1996) 81–108. Zbl0865.62032MR1424904
  27. [27] V. V. Petrov. Limit Theorems of Probability Theory. Oxford Science Publications, New York, 1995. Zbl0826.60001MR1353441
  28. [28] O. Reiersøl. Identifiability of a linear relation between variables which are subject to error. Econometrica. 18 (1950) 375–389. Zbl0040.22502MR38054
  29. [29] M.-L. Taupin. Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Statist. 29 (2001) 66–93. Zbl1029.62039MR1833959
  30. [30] A. van der Vaart. Semiparametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1999) 331–457. Lecture Notes in Math. 1781. Berlin, Springer, 2002. Zbl1013.62031MR1915446
  31. [31] A. W. van der Vaart. Estimating a real parameter in a class of semiparametric models. Ann. Statist. 16 (1988) 1450–1474. Zbl0665.62034MR964933
  32. [32] A. W. van der Vaart. Efficient estimation in semi-parametric mixture models. Ann. Statist. 24 (1996) 862–878. Zbl0860.62029MR1394993
  33. [33] K. M. Wolter and W. A. Fuller. Estimation of nonlinear errors-in variables models. Ann. Statist. 10 (1982) 539–548. Zbl0512.62065MR653528
  34. [34] K. M. Wolter and W. A. Fuller. Estimation of the quadratic errors-in-variables model. Biometrika 69 (1982) 175–182. Zbl0555.62056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.