Estimation in autoregressive model with measurement error

Jérôme Dedecker; Adeline Samson; Marie-Luce Taupin

ESAIM: Probability and Statistics (2014)

  • Volume: 18, page 277-307
  • ISSN: 1292-8100

Abstract

top
Consider an autoregressive model with measurement error: we observe Zi = Xi + εi, where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi − 1) + ξi. The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions. The distribution of ε0is completely known. We propose an estimation procedure with a new criterion computed as the Fourier transform of a weighted least square contrast. This procedure provides an asymptotically normal estimator θ ^ θ̂ of θ0, for a large class of regression functions and various noise distributions.

How to cite

top

Dedecker, Jérôme, Samson, Adeline, and Taupin, Marie-Luce. "Estimation in autoregressive model with measurement error." ESAIM: Probability and Statistics 18 (2014): 277-307. <http://eudml.org/doc/273642>.

@article{Dedecker2014,
abstract = {Consider an autoregressive model with measurement error: we observe Zi = Xi + εi, where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi − 1) + ξi. The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions. The distribution of ε0is completely known. We propose an estimation procedure with a new criterion computed as the Fourier transform of a weighted least square contrast. This procedure provides an asymptotically normal estimator $\hat\{\theta \}$θ̂ of θ0, for a large class of regression functions and various noise distributions.},
author = {Dedecker, Jérôme, Samson, Adeline, Taupin, Marie-Luce},
journal = {ESAIM: Probability and Statistics},
keywords = {autoregressive model; Markov chain; mixing; deconvolution; semi–parametric model; semiparametric model},
language = {eng},
pages = {277-307},
publisher = {EDP-Sciences},
title = {Estimation in autoregressive model with measurement error},
url = {http://eudml.org/doc/273642},
volume = {18},
year = {2014},
}

TY - JOUR
AU - Dedecker, Jérôme
AU - Samson, Adeline
AU - Taupin, Marie-Luce
TI - Estimation in autoregressive model with measurement error
JO - ESAIM: Probability and Statistics
PY - 2014
PB - EDP-Sciences
VL - 18
SP - 277
EP - 307
AB - Consider an autoregressive model with measurement error: we observe Zi = Xi + εi, where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi − 1) + ξi. The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions. The distribution of ε0is completely known. We propose an estimation procedure with a new criterion computed as the Fourier transform of a weighted least square contrast. This procedure provides an asymptotically normal estimator $\hat{\theta }$θ̂ of θ0, for a large class of regression functions and various noise distributions.
LA - eng
KW - autoregressive model; Markov chain; mixing; deconvolution; semi–parametric model; semiparametric model
UR - http://eudml.org/doc/273642
ER -

References

top
  1. [1] B.D.O. Anderson and M. Deistler, Identifiability in dynamic errors-in-variables models. J. Time Ser. Anal.5 (1984) 1–13. Zbl0536.93064MR747410
  2. [2] P. AngoNze, Critères d’ergodicité géométrique ou arithmétique de modèles linéaires perturbés à représentation markovienne. C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 371–376. Zbl0918.60052
  3. [3] P.J. Bickel, Y. Ritov and T. Rydén, Asymptotic normality of the maximum–likelihood estimator for general hidden Markov models. Ann. Statist.26 (1998) 1614–1635. Zbl0932.62097MR1647705
  4. [4] R.C. Bradley, Basic properties of strong mixing conditions, in Dependence in probability and statistics (Oberwolfach 1985). Boston, MA: Birkhäuser Boston, Progr. Probab. Statist. 11 (1986) 165–192. Zbl0603.60034MR899990
  5. [5] P.J. Brockwell and R.A. Davis, Time series: theory and methods (Second ed.). Springer Ser. Statistics. New York: Springer-Verlag (1991). Zbl0604.62083MR1093459
  6. [6] C. Butucea and M.-L. Taupin, New M-estimators in semiparametric regression with errors in variables. Ann. Inst. Henri Poincaré, Probab. Stat. 44 (2008) 393–421. Zbl1206.62068MR2451051
  7. [7] K.C. Chanda, Large sample analysis of autoregressive moving-average models with errors in variables. J. Time Ser. Anal.16 (1995) 1–15. Zbl0814.62052MR1323615
  8. [8] K.C. Chanda, Asymptotic properties of estimators for autoregressive models with errors in variables. Ann. Statist.24 (1996) 423–430. Zbl0853.62070MR1389899
  9. [9] F. Comte and M.-L. Taupin, Semiparametric estimation in the (auto)-regressive β–mixing model with errors-in-variables. Math. Methods Statist.10 (2001) 121–160. Zbl1005.62036MR1851745
  10. [10] M. Costa and T. Alpuim, Parameter estimation of state space models for univariate observations. J. Statist. Plann. Inference140 (2010) 1889–1902. Zbl1185.62165MR2606726
  11. [11] J. DedeckerF. Merlevède and M. Peligrad, A quenched weak invariance principle. Technical report, to appear in Ann. Inst. Henri Poincaré Probab. Statist. (2012). http://fr.arxiv.org/abs/math.ST/arxiv:1204.4554 Zbl1304.60031MR3224292
  12. [12] J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203–236. Zbl1061.62058MR2199291
  13. [13] J. Dedecker and E. Rio, On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré Probab. Statist.36 (2000) 1–34. Zbl0949.60049MR1743095
  14. [14] R. Douc and C. Matias, Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli7 (2001) 381–420. Zbl0987.62018MR1836737
  15. [15] R. Douc, E. Moulines, J. Olsson and R. van Handel, Consistency of the maximum likelihood estimator for general hidden markov models. Ann. Statist.39 (2011) 474–513. Zbl1209.62194MR2797854
  16. [16] R. Douc, É. Moulines and T. Rydén, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist.32 (2004) 2254–2304. Zbl1056.62028MR2102510
  17. [17] C.-D. Fuh, Efficient likelihood estimation in state space models. Ann. Statist.34 (2006) 2026–2068. Zbl1246.62185MR2283726
  18. [18] V. Genon−Catalot and C. Laredo, Leroux’s method for general hidden Markov models. Stochastic Process. Appl. 116 (2006) 222–243. Zbl1099.60022MR2197975
  19. [19] E.J. Hannan, The asymptotic theory of linear time−series models. J. Appl. Probab. 10 (1973) 130–145. Zbl0261.62073MR365960
  20. [20] J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist.27 (1999) 514–535. Zbl0952.62023MR1714719
  21. [21] B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process. Appl.40 (1992) 127–143. Zbl0738.62081MR1145463
  22. [22] A. Mokkadem, Le modèle non linéaire AR(1) général. Ergodicité et ergodicité géométrique. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 889–892. Zbl0588.60070
  23. [23] S. Na, S. Lee and H. Park, Sequential empirical process in autoregressive models with measurement errors. J. Statist. Plann. Inference136 (2006) 4204–4216. Zbl1098.62116MR2323411
  24. [24] E. Nowak, Global identification of the dynamic shock-error model. J. Econom.27 (1985) 211–219. Zbl0556.62089MR786615
  25. [25] E. Rio, Covariance inequalities for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Statist.29 (1993) 587–597. Zbl0798.60027MR1251142
  26. [26] M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA42 (1956) 43–47. Zbl0070.13804MR74711
  27. [27] J. Staudenmayer and J.P. Buonaccorsi, Measurement error in linear autoregressive models. J. Amer. Statist. Assoc.100 (2005) 841–852. Zbl1117.62430MR2201013
  28. [28] A. Trapletti and K. Hornik, tseries: Time Series Analysis and Computational Finance. R package version 0.10-25 (2011). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.