Joint continuity of the local times of fractional brownian sheets
Antoine Ayache; Dongsheng Wu; Yimin Xiao
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 4, page 727-748
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. J. Adler. The Geometry of Random Fields. Wiley, New York, 1981. Zbl0478.60059MR611857
- [2] A. Ayache, S. Leger and M. Pontier. Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31–43. Zbl1006.60029MR1906407
- [3] A. Ayache and Y. Xiao. Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407–439. Zbl1088.60033MR2169474
- [4] D. A. Benson, M. M. Meerschaert and B. Baeumer. Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415.
- [5] S. M. Berman. Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277–299. Zbl0184.40801MR239652
- [6] S. M. Berman. Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63–86. Zbl0246.60038MR307320
- [7] S. M. Berman. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69–94. Zbl0264.60024MR317397
- [8] A. Bonami and A. Estrade. Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215–236. Zbl1034.60038MR1988750
- [9] J. Cuzick and J. DuPreez. Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810–817. Zbl0492.60032MR659550
- [10] M. Dozzi. Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127–166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. Zbl1042.60031MR1975519
- [11] T. Dunker. Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357–382. Zbl0971.60041MR1777539
- [12] W. Ehm. Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195–228. Zbl0471.60046MR618272
- [13] D. Geman and J. Horowitz. Occupation densities. Ann. Probab. 8 (1980) 1–67. Zbl0499.60081MR556414
- [14] D. Geman, J. Horowitz and J. Rosen. A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86–107. Zbl0536.60046MR723731
- [15] G. H. Hardy. Inequalities. Cambridge Univ. Press, 1934. Zbl0010.10703JFM60.0169.01
- [16] H. Kesten. An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447–456. Zbl0132.12701MR178494
- [17] D. Khoshnevisan. Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. Zbl1005.60005MR1914748
- [18] D. Khoshnevisan, D. Wu and Y. Xiao. Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817–843. Zbl1111.60020MR2261054
- [19] D. Khoshnevisan and Y. Xiao. Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125–3151. Zbl1124.60037MR2299449
- [20] D. Khoshnevisan, Y. Xiao and Y. Zhong. Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193–216. Zbl1075.60520MR1961619
- [21] D. M. Mason and Z. Shi. Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213–239. Zbl0982.60024MR1822902
- [22] T. S. Mountford. A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179–185. Zbl0668.60044MR976063
- [23] T. S. Mountford and D. Baraka. A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. Zbl1157.60030
- [24] B. Øksendal and T. Zhang. Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141–163. Zbl0986.60056MR1922562
- [25] L. D. Pitt. Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309–330. Zbl0382.60055MR471055
- [26] C. A. Rogers and S. J. Taylor. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1–31. Zbl0145.28701MR130336
- [27] J. Rosen. Self-intersections of random fields. Ann. Probab. 12 (1984) 108–119. Zbl0536.60066MR723732
- [28] M. Talagrand. Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767–775. Zbl0830.60034MR1334170
- [29] D. Wu and Y. Xiao. Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1–37. Zbl1127.60032MR2296726
- [30] Y. Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129–157. Zbl0882.60035MR1469923
- [31] Y. Xiao. Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157–193. Zbl1128.60041MR2225751
- [32] Y. Xiao. Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. Zbl1167.60011
- [33] Y. Xiao and T. Zhang. Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204–226. Zbl1009.60024MR1936017