Joint continuity of the local times of fractional brownian sheets
Antoine Ayache; Dongsheng Wu; Yimin Xiao
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 4, page 727-748
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAyache, Antoine, Wu, Dongsheng, and Xiao, Yimin. "Joint continuity of the local times of fractional brownian sheets." Annales de l'I.H.P. Probabilités et statistiques 44.4 (2008): 727-748. <http://eudml.org/doc/77989>.
@article{Ayache2008,
abstract = {Let BH=\{BH(t), t∈ℝ+N\} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d<∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results are applied to study analytic and geometric properties of the sample paths of BH.},
author = {Ayache, Antoine, Wu, Dongsheng, Xiao, Yimin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional brownian sheet; Liouville fractional brownian sheet; fractional brownian motion; sectorial local nondeterminism; local times; joint continuity; Hölder conditions; fractional Brownian sheet; Liouville fractional Brownian sheet; fractional Brownian motion},
language = {eng},
number = {4},
pages = {727-748},
publisher = {Gauthier-Villars},
title = {Joint continuity of the local times of fractional brownian sheets},
url = {http://eudml.org/doc/77989},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Ayache, Antoine
AU - Wu, Dongsheng
AU - Xiao, Yimin
TI - Joint continuity of the local times of fractional brownian sheets
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 727
EP - 748
AB - Let BH={BH(t), t∈ℝ+N} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d<∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results are applied to study analytic and geometric properties of the sample paths of BH.
LA - eng
KW - fractional brownian sheet; Liouville fractional brownian sheet; fractional brownian motion; sectorial local nondeterminism; local times; joint continuity; Hölder conditions; fractional Brownian sheet; Liouville fractional Brownian sheet; fractional Brownian motion
UR - http://eudml.org/doc/77989
ER -
References
top- [1] R. J. Adler. The Geometry of Random Fields. Wiley, New York, 1981. Zbl0478.60059MR611857
- [2] A. Ayache, S. Leger and M. Pontier. Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31–43. Zbl1006.60029MR1906407
- [3] A. Ayache and Y. Xiao. Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407–439. Zbl1088.60033MR2169474
- [4] D. A. Benson, M. M. Meerschaert and B. Baeumer. Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415.
- [5] S. M. Berman. Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277–299. Zbl0184.40801MR239652
- [6] S. M. Berman. Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63–86. Zbl0246.60038MR307320
- [7] S. M. Berman. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69–94. Zbl0264.60024MR317397
- [8] A. Bonami and A. Estrade. Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215–236. Zbl1034.60038MR1988750
- [9] J. Cuzick and J. DuPreez. Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810–817. Zbl0492.60032MR659550
- [10] M. Dozzi. Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127–166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. Zbl1042.60031MR1975519
- [11] T. Dunker. Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357–382. Zbl0971.60041MR1777539
- [12] W. Ehm. Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195–228. Zbl0471.60046MR618272
- [13] D. Geman and J. Horowitz. Occupation densities. Ann. Probab. 8 (1980) 1–67. Zbl0499.60081MR556414
- [14] D. Geman, J. Horowitz and J. Rosen. A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86–107. Zbl0536.60046MR723731
- [15] G. H. Hardy. Inequalities. Cambridge Univ. Press, 1934. Zbl0010.10703JFM60.0169.01
- [16] H. Kesten. An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447–456. Zbl0132.12701MR178494
- [17] D. Khoshnevisan. Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. Zbl1005.60005MR1914748
- [18] D. Khoshnevisan, D. Wu and Y. Xiao. Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817–843. Zbl1111.60020MR2261054
- [19] D. Khoshnevisan and Y. Xiao. Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125–3151. Zbl1124.60037MR2299449
- [20] D. Khoshnevisan, Y. Xiao and Y. Zhong. Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193–216. Zbl1075.60520MR1961619
- [21] D. M. Mason and Z. Shi. Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213–239. Zbl0982.60024MR1822902
- [22] T. S. Mountford. A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179–185. Zbl0668.60044MR976063
- [23] T. S. Mountford and D. Baraka. A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. Zbl1157.60030
- [24] B. Øksendal and T. Zhang. Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141–163. Zbl0986.60056MR1922562
- [25] L. D. Pitt. Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309–330. Zbl0382.60055MR471055
- [26] C. A. Rogers and S. J. Taylor. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1–31. Zbl0145.28701MR130336
- [27] J. Rosen. Self-intersections of random fields. Ann. Probab. 12 (1984) 108–119. Zbl0536.60066MR723732
- [28] M. Talagrand. Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767–775. Zbl0830.60034MR1334170
- [29] D. Wu and Y. Xiao. Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1–37. Zbl1127.60032MR2296726
- [30] Y. Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129–157. Zbl0882.60035MR1469923
- [31] Y. Xiao. Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157–193. Zbl1128.60041MR2225751
- [32] Y. Xiao. Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. Zbl1167.60011
- [33] Y. Xiao and T. Zhang. Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204–226. Zbl1009.60024MR1936017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.