Joint continuity of the local times of fractional brownian sheets

Antoine Ayache; Dongsheng Wu; Yimin Xiao

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 4, page 727-748
  • ISSN: 0246-0203

Abstract

top
Let BH={BH(t), t∈ℝ+N} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d<∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results are applied to study analytic and geometric properties of the sample paths of BH.

How to cite

top

Ayache, Antoine, Wu, Dongsheng, and Xiao, Yimin. "Joint continuity of the local times of fractional brownian sheets." Annales de l'I.H.P. Probabilités et statistiques 44.4 (2008): 727-748. <http://eudml.org/doc/77989>.

@article{Ayache2008,
abstract = {Let BH=\{BH(t), t∈ℝ+N\} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d&lt;∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results are applied to study analytic and geometric properties of the sample paths of BH.},
author = {Ayache, Antoine, Wu, Dongsheng, Xiao, Yimin},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional brownian sheet; Liouville fractional brownian sheet; fractional brownian motion; sectorial local nondeterminism; local times; joint continuity; Hölder conditions; fractional Brownian sheet; Liouville fractional Brownian sheet; fractional Brownian motion},
language = {eng},
number = {4},
pages = {727-748},
publisher = {Gauthier-Villars},
title = {Joint continuity of the local times of fractional brownian sheets},
url = {http://eudml.org/doc/77989},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Ayache, Antoine
AU - Wu, Dongsheng
AU - Xiao, Yimin
TI - Joint continuity of the local times of fractional brownian sheets
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 4
SP - 727
EP - 748
AB - Let BH={BH(t), t∈ℝ+N} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d&lt;∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results are applied to study analytic and geometric properties of the sample paths of BH.
LA - eng
KW - fractional brownian sheet; Liouville fractional brownian sheet; fractional brownian motion; sectorial local nondeterminism; local times; joint continuity; Hölder conditions; fractional Brownian sheet; Liouville fractional Brownian sheet; fractional Brownian motion
UR - http://eudml.org/doc/77989
ER -

References

top
  1. [1] R. J. Adler. The Geometry of Random Fields. Wiley, New York, 1981. Zbl0478.60059MR611857
  2. [2] A. Ayache, S. Leger and M. Pontier. Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31–43. Zbl1006.60029MR1906407
  3. [3] A. Ayache and Y. Xiao. Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407–439. Zbl1088.60033MR2169474
  4. [4] D. A. Benson, M. M. Meerschaert and B. Baeumer. Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415. 
  5. [5] S. M. Berman. Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277–299. Zbl0184.40801MR239652
  6. [6] S. M. Berman. Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63–86. Zbl0246.60038MR307320
  7. [7] S. M. Berman. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69–94. Zbl0264.60024MR317397
  8. [8] A. Bonami and A. Estrade. Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215–236. Zbl1034.60038MR1988750
  9. [9] J. Cuzick and J. DuPreez. Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810–817. Zbl0492.60032MR659550
  10. [10] M. Dozzi. Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127–166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. Zbl1042.60031MR1975519
  11. [11] T. Dunker. Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357–382. Zbl0971.60041MR1777539
  12. [12] W. Ehm. Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195–228. Zbl0471.60046MR618272
  13. [13] D. Geman and J. Horowitz. Occupation densities. Ann. Probab. 8 (1980) 1–67. Zbl0499.60081MR556414
  14. [14] D. Geman, J. Horowitz and J. Rosen. A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86–107. Zbl0536.60046MR723731
  15. [15] G. H. Hardy. Inequalities. Cambridge Univ. Press, 1934. Zbl0010.10703JFM60.0169.01
  16. [16] H. Kesten. An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447–456. Zbl0132.12701MR178494
  17. [17] D. Khoshnevisan. Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. Zbl1005.60005MR1914748
  18. [18] D. Khoshnevisan, D. Wu and Y. Xiao. Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817–843. Zbl1111.60020MR2261054
  19. [19] D. Khoshnevisan and Y. Xiao. Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125–3151. Zbl1124.60037MR2299449
  20. [20] D. Khoshnevisan, Y. Xiao and Y. Zhong. Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193–216. Zbl1075.60520MR1961619
  21. [21] D. M. Mason and Z. Shi. Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213–239. Zbl0982.60024MR1822902
  22. [22] T. S. Mountford. A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179–185. Zbl0668.60044MR976063
  23. [23] T. S. Mountford and D. Baraka. A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. Zbl1157.60030
  24. [24] B. Øksendal and T. Zhang. Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141–163. Zbl0986.60056MR1922562
  25. [25] L. D. Pitt. Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309–330. Zbl0382.60055MR471055
  26. [26] C. A. Rogers and S. J. Taylor. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1–31. Zbl0145.28701MR130336
  27. [27] J. Rosen. Self-intersections of random fields. Ann. Probab. 12 (1984) 108–119. Zbl0536.60066MR723732
  28. [28] M. Talagrand. Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767–775. Zbl0830.60034MR1334170
  29. [29] D. Wu and Y. Xiao. Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1–37. Zbl1127.60032MR2296726
  30. [30] Y. Xiao. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129–157. Zbl0882.60035MR1469923
  31. [31] Y. Xiao. Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157–193. Zbl1128.60041MR2225751
  32. [32] Y. Xiao. Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. Zbl1167.60011
  33. [33] Y. Xiao and T. Zhang. Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204–226. Zbl1009.60024MR1936017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.