Change-point estimation from indirect observations. 1. Minimax complexity

A. Goldenshluger; A. Juditsky; A. B. Tsybakov; A. Zeevi

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 5, page 787-818
  • ISSN: 0246-0203

Abstract

top
We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.

How to cite

top

Goldenshluger, A., et al. "Change-point estimation from indirect observations. 1. Minimax complexity." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 787-818. <http://eudml.org/doc/77992>.

@article{Goldenshluger2008,
abstract = {We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.},
author = {Goldenshluger, A., Juditsky, A., Tsybakov, A. B., Zeevi, A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {change-point estimations; ill-posed problems; minimax risk; sequence space model; optimal rates of convergence},
language = {eng},
number = {5},
pages = {787-818},
publisher = {Gauthier-Villars},
title = {Change-point estimation from indirect observations. 1. Minimax complexity},
url = {http://eudml.org/doc/77992},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Goldenshluger, A.
AU - Juditsky, A.
AU - Tsybakov, A. B.
AU - Zeevi, A.
TI - Change-point estimation from indirect observations. 1. Minimax complexity
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 787
EP - 818
AB - We consider the problem of nonparametric estimation of signal singularities from indirect and noisy observations. Here by singularity, we mean a discontinuity (change-point) of the signal or of its derivative. The model of indirect observations we consider is that of a linear transform of the signal, observed in white noise. The estimation problem is analyzed in a minimax framework. We provide lower bounds for minimax risks and propose rate-optimal estimation procedures.
LA - eng
KW - change-point estimations; ill-posed problems; minimax risk; sequence space model; optimal rates of convergence
UR - http://eudml.org/doc/77992
ER -

References

top
  1. [1] A. Antoniadis and I. Gijbels. Detecting abrupt changes by wavelet methods. J. Nonparametr. Stat. 14 (2002) 7–29. Zbl1017.62033MR1905582
  2. [2] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Upper Saddle River, NJ, 1993. MR1210954
  3. [3] A. S. Dalalyan. G. K. Golubev and A. Tsybakov. Penalized maximum likelihood and semiparametric second order efficiency. Ann. Statist. 34 (2006) 169–201. Zbl1091.62020MR2275239
  4. [4] M. I. Freidlin and A. P. Korostelev. Image processing for plane domains: change-point problems for the domain’s area. Problems Inform. Transmission 31 (1995) 27–45. Zbl0897.62107MR1322213
  5. [5] I. Gijbels, P. Hall and A. Kneip. On the estimation of jump points in smooth curves. Ann. Inst. Statist. Math. 51 (1999) 231–251. Zbl0934.62035MR1707773
  6. [6] A. Goldenshluger, A. Tsybakov and A. Zeevi. Optimal change-point estimation from indirect observations. Ann. Statist. 34 (2006) 350–372. Zbl1091.62021MR2275245
  7. [7] A. Goldenshluger, A. Tsybakov, A. Juditsky and A. Zeevi. Change-point estimation from indirect observations 2. Adaptation. Annales de l’IHP 44 (2008) 819–836. Zbl1206.62047MR2453846
  8. [8] G. K. Golubev. Estimation of the time delay of a signal under nuisance parameters. Problems Inform. Transmission 25 (1989) 173–180. Zbl0705.62080MR1021195
  9. [9] E. J. Hannan. The estimation of frequency. J. Appl. Probab. 10 (1973) 510–519. Zbl0271.62122MR370977
  10. [10] J. Huh and K. C. Carriere. Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statist. Probab. Lett. 56 (2002) 329–343. Zbl0998.62039MR1892994
  11. [11] I. A. Ibragimov and R. Z. Has’minski. Statistical Estimation: Asymptotic Theory. Springer, New York, 1981. Zbl0467.62026MR620321
  12. [12] A. P. Korostelev. Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 (1987) 727–730. Zbl0659.62103MR927265
  13. [13] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. Zbl1038.62073MR2144185
  14. [14] H.-G. Müller. Change-points in nonparametric regression analysis. Ann. Statist. 20 (1992) 737–761. Zbl0783.62032MR1165590
  15. [15] M. H. Neumann. Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 (1997) 503–521. Zbl0902.62048MR1615339
  16. [16] C.-W. Park and W.-C. Kim. Estimation of a regression function with a sharp change point using boundary wavelets. Statist. Probab. Lett. 66 (2004) 435–448. Zbl1070.62023MR2045137
  17. [17] B. G. Quinn and E. J. Hannan. The Estimation and Tracking of Frequency. Cambridge University Press, 2001. Zbl0969.62060MR1813156
  18. [18] M. Raimondo. Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379–1397. Zbl0929.62039MR1647673
  19. [19] J. A. Rice and M. Rosenblatt. On frequency estimation. Biometrika 74 (1988) 477–484. Zbl0654.62077MR967586
  20. [20] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, 1993. Translated from the 1987 Russian original. Zbl0818.26003MR1347689
  21. [21] A. B. Tsybakov. Introduction à l’estimation non-paramétrique. Springer, Berlin, 2004. Zbl1029.62034MR2013911
  22. [22] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer, New York, 1996. Zbl0862.60002MR1385671
  23. [23] Y. Wang. Jump and sharp cusp detection by wavelets. Biometrika 82 (1995) 385–397. Zbl0824.62031MR1354236
  24. [24] Y. Q. Yin. Detection of the number, locations and amplitudes of jumps. Comm. Statist. Stochastic Models 4 (1988) 445–455. Zbl0666.62080MR971600
  25. [25] A. Zygmund. Trigonometirc Series, vol. I, 2nd edition. Cambridge University Press, 1959. MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.