Near-minimal spanning trees : a scaling exponent in probability models
David J. Aldous; Charles Bordenave; Marc Lelarge
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 962-976
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAldous, David J., Bordenave, Charles, and Lelarge, Marc. "Near-minimal spanning trees : a scaling exponent in probability models." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 962-976. <http://eudml.org/doc/77999>.
@article{Aldous2008,
abstract = {We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2). We prove this scaling result in the model of the lattice with random edge-lengths and in the euclidean model.},
author = {Aldous, David J., Bordenave, Charles, Lelarge, Marc},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {combinatorial optimization; continuum percolation; disordered lattice; local weak convergence; minimal spanning tree; Poisson point process; probabilistic analysis of algorithms; random geometric graph},
language = {eng},
number = {5},
pages = {962-976},
publisher = {Gauthier-Villars},
title = {Near-minimal spanning trees : a scaling exponent in probability models},
url = {http://eudml.org/doc/77999},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Aldous, David J.
AU - Bordenave, Charles
AU - Lelarge, Marc
TI - Near-minimal spanning trees : a scaling exponent in probability models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 962
EP - 976
AB - We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2). We prove this scaling result in the model of the lattice with random edge-lengths and in the euclidean model.
LA - eng
KW - combinatorial optimization; continuum percolation; disordered lattice; local weak convergence; minimal spanning tree; Poisson point process; probabilistic analysis of algorithms; random geometric graph
UR - http://eudml.org/doc/77999
ER -
References
top- [1] D. J. Aldous and A. G. Percus. Scaling and universality in continuous length combinatorial optimization. Proc. Natl. Acad. Sci. USA 100 (2003) 11211–11215. Zbl1063.90041MR2007286
- [2] D. J. Aldous. The ζ(2) limit in the random assignment problem. Random Structures Algorithms 18 (2001) 381–418. Zbl0993.60018MR1839499
- [3] D. J. Aldous and J. M. Steele. Asymptotics for Euclidean minimal spanning trees on random points. Probab. Theory Related Fields 92 (1992) 247–258. Zbl0767.60005MR1161188
- [4] D. J. Aldous and J. M. Steele. The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures 1–72. H. Kesten (Ed.). Springer, Berlin, 2003. Zbl1037.60008MR2023650
- [5] K. S. Alexander. Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 (1995) 87–104. Zbl0827.60079MR1330762
- [6] K. S. Alexander. Simultaneous uniqueness of infinite clusters in stationary random labeled graphs. Comm. Math. Phys. 168 (1995) 39–55. Zbl0827.60080MR1324390
- [7] G. Chartrand and L. Lesniak. Graphs and Digraphs, 2nd edition. Wadsworth, Monterey, CA, 1986. Zbl0666.05001MR834583
- [8] L. P. Kadanoff. Statistical Physics. World Scientific, River Edge, NJ, 2000. Zbl0952.82001MR1772071
- [9] W. Krauth and M. Mézard. The cavity method and the travelling-salesman problem. Europhys. Lett. 8 (1989) 213–218.
- [10] R. Meester and R. Roy. Continuum Percolation. Cambridge Univ. Press, 1996. Zbl0858.60092MR1409145
- [11] J. M. Steele. Probability Theory and Combinatorial Optimization. SIAM, Philadelphia, PA, 1997. Zbl0916.90233MR1422018
- [12] M. Penrose and J. E. Yukich. Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 (2003) 277–303. Zbl1029.60008MR1952000
- [13] J. E. Yukich. Probability Theory of Classical Euclidean Optimization Problems. Springer, Berlin, 1998. Zbl0902.60001MR1632875
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.