Random walk local time approximated by a brownian sheet combined with an independent brownian motion
Endre Csáki; Miklós Csörgő; Antónia Földes; Pál Révész
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 2, page 515-544
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCsáki, Endre, et al. "Random walk local time approximated by a brownian sheet combined with an independent brownian motion." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 515-544. <http://eudml.org/doc/78032>.
@article{Csáki2009,
abstract = {Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.},
author = {Csáki, Endre, Csörgő, Miklós, Földes, Antónia, Révész, Pál},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local time; random walk; brownian sheet; strong approximation; Brownian sheet},
language = {eng},
number = {2},
pages = {515-544},
publisher = {Gauthier-Villars},
title = {Random walk local time approximated by a brownian sheet combined with an independent brownian motion},
url = {http://eudml.org/doc/78032},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Csáki, Endre
AU - Csörgő, Miklós
AU - Földes, Antónia
AU - Révész, Pál
TI - Random walk local time approximated by a brownian sheet combined with an independent brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 515
EP - 544
AB - Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
LA - eng
KW - local time; random walk; brownian sheet; strong approximation; Brownian sheet
UR - http://eudml.org/doc/78032
ER -
References
top- [1] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1992. Reprint of the 1972 edition. Zbl0543.33001MR1225604
- [2] R. F. Bass and D. Khoshnevisan. Rates of convergence to Brownian local time. Stochastic Process. Appl. 47 (1993) 197–213. Zbl0783.60072MR1239837
- [3] I. Berkes and W. Philipp. Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 (1979) 29–54. Zbl0392.60024MR515811
- [4] A. N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986) 231–250. Zbl0572.60078MR836277
- [5] A. N. Borodin. On the character of convergence to Brownian local time II. Probab. Theory Related Fields 72 (1986) 251–277. Zbl0572.60079MR836277
- [6] A. N. Borodin. Brownian local time. Russian Math. Surveys 44 (1989) 1–51. Zbl0705.60064MR998360
- [7] A. N. Borodin and P. Salminen. Handbook of Brownian Motion – Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. Zbl1012.60003MR1912205
- [8] K. Burdzy. Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes 67–87. E. Çinlar, K. L. Chung and M. J. Sharpe (Eds). Progr. Probab. 33. Birkhäuser, Boston, 1993. Zbl0789.60060MR1278077
- [9] E. Csáki, M. Csörgő, A. Földes and P. Révész. How big are the increments of the local time of a Wiener process? Ann. Probab. 11 (1983) 593–608. Zbl0545.60074MR704546
- [10] E. Csáki, M. Csörgő, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989) 516–537. Zbl0674.60072MR985376
- [11] E. Csáki, M. Csörgő, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992) 679–706. Zbl0762.60024MR1182676
- [12] E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983) 307–322. Zbl0516.60078MR722134
- [13] E. Csáki and A. Földes. On the local time process standardized by the local time at zero. Acta Math. Hungar. 52 (1988) 175–186. Zbl0652.60080MR956149
- [14] M. Csörgő and L. Horváth. On best possible approximations of local time. Statist. Probab. Lett. 8 (1989) 301–306. Zbl0691.60067MR1028987
- [15] M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. Academic Press, New York, 1981. Zbl0539.60029MR666546
- [16] M. Csörgő and P. Révész. On the stability of the local time of a symmetric random walk. Acta Sci. Math. (Szeged) 48 (1985) 85–96. Zbl0586.60060MR810868
- [17] R. L. Dobrushin. Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk (N. S.) 10 (1955) 139–146 (in Russian). Zbl0068.32802MR71662
- [18] M. Dwass. Branching processes in simple random walk. Proc. Amer. Math. Soc. 51 (1975) 270–274. Zbl0312.60032MR370775
- [19] N. Eisenbaum. A Gaussian sheet connected to symmetric Markov chains. Séminaire de Probabilités XXXVI 331–334. Lecture Notes in Math. 1801. Springer, New York, 2003. Zbl1035.60077MR1971594
- [20] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
- [21] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland, Amsterdam, 1989. Zbl0684.60040MR1011252
- [22] Y. Kasahara. Limit theorems of occupation times for Markov processes. Publ. Res. Inst. Math. Sci. 12 (1976/1977) 801–818. Zbl0367.60094MR448575
- [23] Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984) 521–538. Zbl0557.60021MR766640
- [24] Y. Kasahara. A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains. J. Math. Soc. Japan 37 (1985) 197–205. Zbl0568.60039MR780659
- [25] H. Kesten. Occupation times for Markov and semi-Markov chains. Trans. Amer. Math. Soc. 103 (1962) 82–112. Zbl0122.36602MR138122
- [26] F. B. Knight. Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 (1963) 56–86. Zbl0119.14604MR154337
- [27] F. B. Knight. Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143 (1969) 173–185. Zbl0187.41203MR253424
- [28] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent rv’s and the sample df. I. Z. Wahrsch. verw. Gebiete 32 (1975) 111–131. Zbl0308.60029MR375412
- [29] P. Lévy. Processus stochastiques et mouvement Brownian, Deuxième edition. Gauthier-Villars & Cie, Paris, 1965. Zbl0034.22603MR190953
- [30] G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. In Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System. Duke Univ., Durham, 1977. Zbl0387.60067MR461684
- [31] P. Révész. Local time and invariance. Lecture Notes in Math. 861 128–145. Springer, New York, 1981. Zbl0456.60029MR655268
- [32] P. Révész. Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Singapore, 2005. Zbl1090.60001MR2168855
- [33] L. C. G. Rogers. Brownian local times and branching processes. Séminaire de Probabilités XVIII 42–55. Lecture Notes in Math. 1059. Springer, New York, 1984. Zbl0542.60080MR770947
- [34] G. R. Shorack and J. A. Wellner. Empirical Processes With Applications to Statistics. Wiley, New York, 1986. Zbl1170.62365MR838963
- [35] A. V. Skorokhod and N. P. Slobodenyuk. Asymptotic behavior of certain functionals of the Brownian motion. Ukrain. Mat. Z. 18 (1966) 60–71 (in Russian). Zbl0253.60071MR208689
- [36] A. V. Skorokhod and N. P. Slobodenyuk. Limit Theorems for Random Walk. Naukova Dumka, Kiev, 1970 (in Russian). Zbl0202.47403
- [37] F. Spitzer. Principles of Random Walk. Van Nostrand, Princeton, NJ, 1964. Zbl0119.34304MR171290
- [38] B. Tóth. No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001) 484–503. Zbl1031.60036MR1825161
- [39] M. Yor. Le drap Brownian comme limite en loi de temps locaux linéaires. Séminaire de Probabilités XVII, 1981/82 89–105. Lecture Notes in Math. 986. Springer, New York, 1983. Zbl0514.60075MR770400
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.