Random walk local time approximated by a brownian sheet combined with an independent brownian motion

Endre Csáki; Miklós Csörgő; Antónia Földes; Pál Révész

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 2, page 515-544
  • ISSN: 0246-0203

Abstract

top
Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.

How to cite

top

Csáki, Endre, et al. "Random walk local time approximated by a brownian sheet combined with an independent brownian motion." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 515-544. <http://eudml.org/doc/78032>.

@article{Csáki2009,
abstract = {Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.},
author = {Csáki, Endre, Csörgő, Miklós, Földes, Antónia, Révész, Pál},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local time; random walk; brownian sheet; strong approximation; Brownian sheet},
language = {eng},
number = {2},
pages = {515-544},
publisher = {Gauthier-Villars},
title = {Random walk local time approximated by a brownian sheet combined with an independent brownian motion},
url = {http://eudml.org/doc/78032},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Csáki, Endre
AU - Csörgő, Miklós
AU - Földes, Antónia
AU - Révész, Pál
TI - Random walk local time approximated by a brownian sheet combined with an independent brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 515
EP - 544
AB - Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
LA - eng
KW - local time; random walk; brownian sheet; strong approximation; Brownian sheet
UR - http://eudml.org/doc/78032
ER -

References

top
  1. [1] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1992. Reprint of the 1972 edition. Zbl0543.33001MR1225604
  2. [2] R. F. Bass and D. Khoshnevisan. Rates of convergence to Brownian local time. Stochastic Process. Appl. 47 (1993) 197–213. Zbl0783.60072MR1239837
  3. [3] I. Berkes and W. Philipp. Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 (1979) 29–54. Zbl0392.60024MR515811
  4. [4] A. N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986) 231–250. Zbl0572.60078MR836277
  5. [5] A. N. Borodin. On the character of convergence to Brownian local time II. Probab. Theory Related Fields 72 (1986) 251–277. Zbl0572.60079MR836277
  6. [6] A. N. Borodin. Brownian local time. Russian Math. Surveys 44 (1989) 1–51. Zbl0705.60064MR998360
  7. [7] A. N. Borodin and P. Salminen. Handbook of Brownian Motion – Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. Zbl1012.60003MR1912205
  8. [8] K. Burdzy. Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes 67–87. E. Çinlar, K. L. Chung and M. J. Sharpe (Eds). Progr. Probab. 33. Birkhäuser, Boston, 1993. Zbl0789.60060MR1278077
  9. [9] E. Csáki, M. Csörgő, A. Földes and P. Révész. How big are the increments of the local time of a Wiener process? Ann. Probab. 11 (1983) 593–608. Zbl0545.60074MR704546
  10. [10] E. Csáki, M. Csörgő, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989) 516–537. Zbl0674.60072MR985376
  11. [11] E. Csáki, M. Csörgő, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992) 679–706. Zbl0762.60024MR1182676
  12. [12] E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983) 307–322. Zbl0516.60078MR722134
  13. [13] E. Csáki and A. Földes. On the local time process standardized by the local time at zero. Acta Math. Hungar. 52 (1988) 175–186. Zbl0652.60080MR956149
  14. [14] M. Csörgő and L. Horváth. On best possible approximations of local time. Statist. Probab. Lett. 8 (1989) 301–306. Zbl0691.60067MR1028987
  15. [15] M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. Academic Press, New York, 1981. Zbl0539.60029MR666546
  16. [16] M. Csörgő and P. Révész. On the stability of the local time of a symmetric random walk. Acta Sci. Math. (Szeged) 48 (1985) 85–96. Zbl0586.60060MR810868
  17. [17] R. L. Dobrushin. Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk (N. S.) 10 (1955) 139–146 (in Russian). Zbl0068.32802MR71662
  18. [18] M. Dwass. Branching processes in simple random walk. Proc. Amer. Math. Soc. 51 (1975) 270–274. Zbl0312.60032MR370775
  19. [19] N. Eisenbaum. A Gaussian sheet connected to symmetric Markov chains. Séminaire de Probabilités XXXVI 331–334. Lecture Notes in Math. 1801. Springer, New York, 2003. Zbl1035.60077MR1971594
  20. [20] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
  21. [21] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland, Amsterdam, 1989. Zbl0684.60040MR1011252
  22. [22] Y. Kasahara. Limit theorems of occupation times for Markov processes. Publ. Res. Inst. Math. Sci. 12 (1976/1977) 801–818. Zbl0367.60094MR448575
  23. [23] Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984) 521–538. Zbl0557.60021MR766640
  24. [24] Y. Kasahara. A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains. J. Math. Soc. Japan 37 (1985) 197–205. Zbl0568.60039MR780659
  25. [25] H. Kesten. Occupation times for Markov and semi-Markov chains. Trans. Amer. Math. Soc. 103 (1962) 82–112. Zbl0122.36602MR138122
  26. [26] F. B. Knight. Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 (1963) 56–86. Zbl0119.14604MR154337
  27. [27] F. B. Knight. Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143 (1969) 173–185. Zbl0187.41203MR253424
  28. [28] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent rv’s and the sample df. I. Z. Wahrsch. verw. Gebiete 32 (1975) 111–131. Zbl0308.60029MR375412
  29. [29] P. Lévy. Processus stochastiques et mouvement Brownian, Deuxième edition. Gauthier-Villars & Cie, Paris, 1965. Zbl0034.22603MR190953
  30. [30] G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. In Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System. Duke Univ., Durham, 1977. Zbl0387.60067MR461684
  31. [31] P. Révész. Local time and invariance. Lecture Notes in Math. 861 128–145. Springer, New York, 1981. Zbl0456.60029MR655268
  32. [32] P. Révész. Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Singapore, 2005. Zbl1090.60001MR2168855
  33. [33] L. C. G. Rogers. Brownian local times and branching processes. Séminaire de Probabilités XVIII 42–55. Lecture Notes in Math. 1059. Springer, New York, 1984. Zbl0542.60080MR770947
  34. [34] G. R. Shorack and J. A. Wellner. Empirical Processes With Applications to Statistics. Wiley, New York, 1986. Zbl1170.62365MR838963
  35. [35] A. V. Skorokhod and N. P. Slobodenyuk. Asymptotic behavior of certain functionals of the Brownian motion. Ukrain. Mat. Z. 18 (1966) 60–71 (in Russian). Zbl0253.60071MR208689
  36. [36] A. V. Skorokhod and N. P. Slobodenyuk. Limit Theorems for Random Walk. Naukova Dumka, Kiev, 1970 (in Russian). Zbl0202.47403
  37. [37] F. Spitzer. Principles of Random Walk. Van Nostrand, Princeton, NJ, 1964. Zbl0119.34304MR171290
  38. [38] B. Tóth. No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001) 484–503. Zbl1031.60036MR1825161
  39. [39] M. Yor. Le drap Brownian comme limite en loi de temps locaux linéaires. Séminaire de Probabilités XVII, 1981/82 89–105. Lecture Notes in Math. 986. Springer, New York, 1983. Zbl0514.60075MR770400

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.