Brownian local times and branching processes

L. C. G. Rogers

Séminaire de probabilités de Strasbourg (1984)

  • Volume: 18, page 42-55

How to cite


Rogers, L. C. G.. "Brownian local times and branching processes." Séminaire de probabilités de Strasbourg 18 (1984): 42-55. <>.

author = {Rogers, L. C. G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {critical branching process; Bessel process; local time of Brownian motion},
language = {eng},
pages = {42-55},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Brownian local times and branching processes},
url = {},
volume = {18},
year = {1984},

AU - Rogers, L. C. G.
TI - Brownian local times and branching processes
JO - Séminaire de probabilités de Strasbourg
PY - 1984
PB - Springer - Lecture Notes in Mathematics
VL - 18
SP - 42
EP - 55
LA - eng
KW - critical branching process; Bessel process; local time of Brownian motion
UR -
ER -


  1. [1] Athreya, K.B. and Ney, P.E.Branching Processes. Springer, Berlin, 1972. Zbl0259.60002MR373040
  2. [2] Billingsley, P.Convergence of Probability Measures. Wiley, New York, 1968. Zbl0172.21201MR233396
  3. [3] Durrett, R.Conditioned limit theorems for some null recurrent Markov processes. Ann. Probability6, 798-828, 1978. Zbl0398.60023MR503953
  4. [4] Durrett, R. and Resnick, S.I.Functional limit theorems for dependent variables. Ann. Probability6, 829-846, 1978. Zbl0398.60024MR503954
  5. [5] Dwass, M.Branching processes in simple random walk. Proc. Amer. Math. Soc.51, 270-274, 1975. Zbl0312.60032MR370775
  6. [6] Ikeda, N. and Watanabe, S.Stochastic differential equations and diffusion processes. North Holland-Kodansha, Amsterdam and Tokyo, 1981. Zbl0495.60005MR637061
  7. [7] Jacod, J. Memin, J., and Metivier, M.Stopping times and tightness. Stoch. Procs. and App.14, 109-146, 1982. Zbl0501.60029
  8. [8] Knight, F.B.Random walks and a sojourn density of Brownian motion. Trans. Amer. Math. Soc.109, 56-86, 1963. Zbl0119.14604MR154337
  9. [9] Lamperti, J.The limit of a sequence of branching processes. Z.f. Wahrscheinlichkeitsth.7, 271-288, 1967. Zbl0154.42603MR217893
  10. [10] Lindvall, T.Convergence of critical Galton-Watson processes. J. Appl. Probability9, 445-450, 1972. Zbl0238.60063MR345227
  11. [11] Pitman, J.W. and Yor, M.Bessel processes and infinitely divisible laws. Stochastic Integrals SLN851, 285-370, Ed. D. Williams. Springer, Berlin, 1981. Zbl0469.60076MR620995
  12. [12] Pitman, J.W. and Yor, M.A decomposition of Bessel bridges. Z.f. Wahrscheinlichkeitsth.59, 425-457, 1982. Zbl0484.60062MR656509
  13. [13] Ray, D.B.Sojourn times of diffusion processes. I11 J. Math.7, 615-630, 1963. Zbl0118.13403MR156383
  14. [14] Rogers, L.C.G.Williams' characterisation of the Brownian excursion law; proof and applications. Sem. Prob.XV227-250, Springer, Berlin,1981. Zbl0462.60078MR622566
  15. [15] Williams, D.Diffusions, Markov Processes, and Martingales. Vol. I. Wiley, Chichester1979. Zbl0402.60003MR531031
  16. [16] Yamada, T. and Watanabe, S.. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.11, 155-167, 1971. Zbl0236.60037MR278420

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.