Brownian local times and branching processes
Séminaire de probabilités de Strasbourg (1984)
- Volume: 18, page 42-55
Access Full Article
topHow to cite
topRogers, L. C. G.. "Brownian local times and branching processes." Séminaire de probabilités de Strasbourg 18 (1984): 42-55. <http://eudml.org/doc/113496>.
@article{Rogers1984,
author = {Rogers, L. C. G.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {critical branching process; Bessel process; local time of Brownian motion},
language = {eng},
pages = {42-55},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Brownian local times and branching processes},
url = {http://eudml.org/doc/113496},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Rogers, L. C. G.
TI - Brownian local times and branching processes
JO - Séminaire de probabilités de Strasbourg
PY - 1984
PB - Springer - Lecture Notes in Mathematics
VL - 18
SP - 42
EP - 55
LA - eng
KW - critical branching process; Bessel process; local time of Brownian motion
UR - http://eudml.org/doc/113496
ER -
References
top- [1] Athreya, K.B. and Ney, P.E.Branching Processes. Springer, Berlin, 1972. Zbl0259.60002MR373040
- [2] Billingsley, P.Convergence of Probability Measures. Wiley, New York, 1968. Zbl0172.21201MR233396
- [3] Durrett, R.Conditioned limit theorems for some null recurrent Markov processes. Ann. Probability6, 798-828, 1978. Zbl0398.60023MR503953
- [4] Durrett, R. and Resnick, S.I.Functional limit theorems for dependent variables. Ann. Probability6, 829-846, 1978. Zbl0398.60024MR503954
- [5] Dwass, M.Branching processes in simple random walk. Proc. Amer. Math. Soc.51, 270-274, 1975. Zbl0312.60032MR370775
- [6] Ikeda, N. and Watanabe, S.Stochastic differential equations and diffusion processes. North Holland-Kodansha, Amsterdam and Tokyo, 1981. Zbl0495.60005MR637061
- [7] Jacod, J. Memin, J., and Metivier, M.Stopping times and tightness. Stoch. Procs. and App.14, 109-146, 1982. Zbl0501.60029
- [8] Knight, F.B.Random walks and a sojourn density of Brownian motion. Trans. Amer. Math. Soc.109, 56-86, 1963. Zbl0119.14604MR154337
- [9] Lamperti, J.The limit of a sequence of branching processes. Z.f. Wahrscheinlichkeitsth.7, 271-288, 1967. Zbl0154.42603MR217893
- [10] Lindvall, T.Convergence of critical Galton-Watson processes. J. Appl. Probability9, 445-450, 1972. Zbl0238.60063MR345227
- [11] Pitman, J.W. and Yor, M.Bessel processes and infinitely divisible laws. Stochastic Integrals SLN851, 285-370, Ed. D. Williams. Springer, Berlin, 1981. Zbl0469.60076MR620995
- [12] Pitman, J.W. and Yor, M.A decomposition of Bessel bridges. Z.f. Wahrscheinlichkeitsth.59, 425-457, 1982. Zbl0484.60062MR656509
- [13] Ray, D.B.Sojourn times of diffusion processes. I11 J. Math.7, 615-630, 1963. Zbl0118.13403MR156383
- [14] Rogers, L.C.G.Williams' characterisation of the Brownian excursion law; proof and applications. Sem. Prob.XV227-250, Springer, Berlin,1981. Zbl0462.60078MR622566
- [15] Williams, D.Diffusions, Markov Processes, and Martingales. Vol. I. Wiley, Chichester1979. Zbl0402.60003MR531031
- [16] Yamada, T. and Watanabe, S.. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.11, 155-167, 1971. Zbl0236.60037MR278420
Citations in EuDML Documents
top- Endre Csáki, Miklós Csörgő, Antónia Földes, Pál Révész, Random walk local time approximated by a brownian sheet combined with an independent brownian motion
- Jean-François Le Gall, Marches aléatoires, mouvement brownien et processus de branchement
- Jean-François Le Gall, Une approche élémentaire des théorèmes de décomposition de Williams
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.