Large deviations for voter model occupation times in two dimensions
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 2, page 577-588
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Ben-Naim, L. Frachebourg and P. L. Krapivsky. Coarsening and persistence in the voter model. Phys. Rev. E 53 (1996) 3078–3087.
- [2] M. Bramson, J. T. Cox and D. Griffeath. Occupation time large deviations of the voter model. Probab. Theory Related Fields 77 (1988) 401–413. Zbl0621.60107MR931506
- [3] P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika 60 (1973) 581–588. Zbl0272.60072MR343950
- [4] J. T. Cox. Some limit theorems for voter model occupation times. Ann. Probab. 16 (1988) 1559–1569. Zbl0656.60105MR958202
- [5] J. T. Cox and D. Griffeath. Occupation time limit theorems for the voter model. Ann. Probab. 11 (1983) 876–893. Zbl0527.60095MR714952
- [6] J. T. Cox and D. Griffeath. Diffusive clustering in the two dimensional voter model. Ann. Probab. 14 (1986) 347–370. Zbl0658.60131MR832014
- [7] I. Dornic and C. Godrèche. Large deviations and nontrivial exponents in coarsening systems. J. Phys. A 31 (1998) 5413–5429. Zbl0954.82010MR1632861
- [8] R. Durrett. Lecture Notes on Particle Systems and Percolation. Belmont, Wadsworth, CA, 1988. Zbl0659.60129MR940469
- [9] R. Durrett. Probability: Theory and Examples, 3rd edition. Duxbury Press, Belmont, CA, 2005. Zbl0709.60002MR1609153
- [10] F. den Hollander. Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000. Zbl0949.60001MR1739680
- [11] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 (1975) 643–663. Zbl0367.60115MR402985
- [12] M. Howard and C. Godrèche. Persistence in the voter model: Continuum reaction-diffusion approach. J. Phys. A 31 (1998) L209–L215. Zbl0925.60126MR1628504
- [13] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
- [14] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231