Large deviations for voter model occupation times in two dimensions
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 2, page 577-588
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMaillard, G., and Mountford, T.. "Large deviations for voter model occupation times in two dimensions." Annales de l'I.H.P. Probabilités et statistiques 45.2 (2009): 577-588. <http://eudml.org/doc/78034>.
@article{Maillard2009,
abstract = {We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→\{0, 1\} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when the deviation from ρ is maximal (i.e., η≡0 or 1), and log(t) in all other situations. This answers some conjectures in [Probab. Theory Related Fields77 (1988) 401–413] and confirms nonrigorous analysis carried out in [Phys. Rev. E53 (1996) 3078–3087], [J. Phys. A31 (1998) 5413–5429] and [J. Phys. A31 (1998) L209–L215].},
author = {Maillard, G., Mountford, T.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {voter model; large deviations; Voter model},
language = {eng},
number = {2},
pages = {577-588},
publisher = {Gauthier-Villars},
title = {Large deviations for voter model occupation times in two dimensions},
url = {http://eudml.org/doc/78034},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Maillard, G.
AU - Mountford, T.
TI - Large deviations for voter model occupation times in two dimensions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 577
EP - 588
AB - We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when the deviation from ρ is maximal (i.e., η≡0 or 1), and log(t) in all other situations. This answers some conjectures in [Probab. Theory Related Fields77 (1988) 401–413] and confirms nonrigorous analysis carried out in [Phys. Rev. E53 (1996) 3078–3087], [J. Phys. A31 (1998) 5413–5429] and [J. Phys. A31 (1998) L209–L215].
LA - eng
KW - voter model; large deviations; Voter model
UR - http://eudml.org/doc/78034
ER -
References
top- [1] E. Ben-Naim, L. Frachebourg and P. L. Krapivsky. Coarsening and persistence in the voter model. Phys. Rev. E 53 (1996) 3078–3087.
- [2] M. Bramson, J. T. Cox and D. Griffeath. Occupation time large deviations of the voter model. Probab. Theory Related Fields 77 (1988) 401–413. Zbl0621.60107MR931506
- [3] P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika 60 (1973) 581–588. Zbl0272.60072MR343950
- [4] J. T. Cox. Some limit theorems for voter model occupation times. Ann. Probab. 16 (1988) 1559–1569. Zbl0656.60105MR958202
- [5] J. T. Cox and D. Griffeath. Occupation time limit theorems for the voter model. Ann. Probab. 11 (1983) 876–893. Zbl0527.60095MR714952
- [6] J. T. Cox and D. Griffeath. Diffusive clustering in the two dimensional voter model. Ann. Probab. 14 (1986) 347–370. Zbl0658.60131MR832014
- [7] I. Dornic and C. Godrèche. Large deviations and nontrivial exponents in coarsening systems. J. Phys. A 31 (1998) 5413–5429. Zbl0954.82010MR1632861
- [8] R. Durrett. Lecture Notes on Particle Systems and Percolation. Belmont, Wadsworth, CA, 1988. Zbl0659.60129MR940469
- [9] R. Durrett. Probability: Theory and Examples, 3rd edition. Duxbury Press, Belmont, CA, 2005. Zbl0709.60002MR1609153
- [10] F. den Hollander. Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI, 2000. Zbl0949.60001MR1739680
- [11] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 (1975) 643–663. Zbl0367.60115MR402985
- [12] M. Howard and C. Godrèche. Persistence in the voter model: Continuum reaction-diffusion approach. J. Phys. A 31 (1998) L209–L215. Zbl0925.60126MR1628504
- [13] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
- [14] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. Zbl0559.60078MR776231
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.