Stochastic domination for iterated convolutions and catalytic majorization
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 611-625
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAubrun, Guillaume, and Nechita, Ion. "Stochastic domination for iterated convolutions and catalytic majorization." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 611-625. <http://eudml.org/doc/78036>.
@article{Aubrun2009,
abstract = {We study how iterated convolutions of probability measures compare under stochastic domination. We give necessary and sufficient conditions for the existence of an integer n such that μ*n is stochastically dominated by ν*n for two given probability measures μ and ν. As a consequence we obtain a similar theorem on the majorization order for vectors in Rd. In particular we prove results about catalysis in quantum information theory.},
author = {Aubrun, Guillaume, Nechita, Ion},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic domination; iterated convolutions; large deviations; majorization; catalysis},
language = {eng},
number = {3},
pages = {611-625},
publisher = {Gauthier-Villars},
title = {Stochastic domination for iterated convolutions and catalytic majorization},
url = {http://eudml.org/doc/78036},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Aubrun, Guillaume
AU - Nechita, Ion
TI - Stochastic domination for iterated convolutions and catalytic majorization
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 611
EP - 625
AB - We study how iterated convolutions of probability measures compare under stochastic domination. We give necessary and sufficient conditions for the existence of an integer n such that μ*n is stochastically dominated by ν*n for two given probability measures μ and ν. As a consequence we obtain a similar theorem on the majorization order for vectors in Rd. In particular we prove results about catalysis in quantum information theory.
LA - eng
KW - stochastic domination; iterated convolutions; large deviations; majorization; catalysis
UR - http://eudml.org/doc/78036
ER -
References
top- [1] G. Aubrun and I. Nechita. Catalytic majorization and ℓp norms. Comm. Math. Phys. 278 (2008) 133–144. Zbl1140.81318MR2367201
- [2] S. Bandyopadhyay, V. Roychowdhury and U. Sen. Classification of nonasymptotic bipartite pure-state entanglement transformations. Phys. Rev. A 65 (2002) 052315.
- [3] R. Bhatia. Matrix Analysis. Springer, New York, 1997. Zbl0863.15001MR1477662
- [4] S. K. Daftuar and M. Klimesh. Mathematical structure of entanglement catalysis. Phys. Rev. A (3) 64 (2001) 042314. MR1858946
- [5] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. Zbl0896.60013MR1619036
- [6] R. Duan, Z. Ji, Y. Feng, X. Li and M. Ying. Some issues in quantum information theory. J. Comput. Sci. and Technol. 21 (2006) 776–789. MR2259604
- [7] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. Zbl0138.10207MR210154
- [8] Y. Feng, R. Duan and M. Ying. Relation between catalyst-assisted entanglement transformation and multiple-copy transformation. Phys. Rev. A (3) 74 (2006) 042312.
- [9] G. Grimmett and D. Stirzaker. Probability and Random Processes, 3rd edition. Oxford University Press, New York, 2001. Zbl1015.60002MR2059709
- [10] D. Jonathan and M. B. Plenio. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83 (1999) 3566–3569. Zbl0947.81016MR1720174
- [11] G. Kuperberg. The capacity of hybrid quantum memory. IEEE Trans. Inform. Theory 49 (2003) 1465–1473. Zbl1063.94030MR1984935
- [12] A. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic Press Inc., New York, 1979. Zbl0437.26007MR552278
- [13] M. Nielsen. Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83 436 (1999).
- [14] M. Owari, S. L. Braunstein, K. Nemoto and M. Murao. ε-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quantum Inf. Comput. 8 (2008) 0030–0052. Zbl1154.81322MR2442328
- [15] G. Pólya and G. Szegö. Problems and Theorems in Analysis. Springer, Berlin, 1978. Zbl0359.00003MR580154
- [16] D. Stoyan. Comparison Metrods for Queues and Other Stochastic Models. Wiley, Chichester, 1983. Zbl0536.60085MR754339
- [17] S. Turgut. Catalytic Transformations for bipartite pure states. J. Phys. A 40 (2007) 12185–12212. Zbl1138.81011MR2395024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.