On unique extension of time changed reflecting brownian motions
Zhen-Qing Chen; Masatoshi Fukushima
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 864-875
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topChen, Zhen-Qing, and Fukushima, Masatoshi. "On unique extension of time changed reflecting brownian motions." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 864-875. <http://eudml.org/doc/78048>.
@article{Chen2009,
abstract = {Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.},
author = {Chen, Zhen-Qing, Fukushima, Masatoshi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflecting brownian motion; transience; time change; uniform domain; Sobolev space; BL function space; reflected Dirichlet space; harmonic function; diffusion extension; reflecting Brownian motion},
language = {eng},
number = {3},
pages = {864-875},
publisher = {Gauthier-Villars},
title = {On unique extension of time changed reflecting brownian motions},
url = {http://eudml.org/doc/78048},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Chen, Zhen-Qing
AU - Fukushima, Masatoshi
TI - On unique extension of time changed reflecting brownian motions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 864
EP - 875
AB - Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
LA - eng
KW - reflecting brownian motion; transience; time change; uniform domain; Sobolev space; BL function space; reflected Dirichlet space; harmonic function; diffusion extension; reflecting Brownian motion
UR - http://eudml.org/doc/78048
ER -
References
top- [1] M. Brelot. Étude et extensions du principe de Dirichlet. Ann. Inst. Fourier 3 (1953–1954) 371–419. Zbl0067.33002MR74540
- [2] Z.-Q. Chen. On reflected Dirichlet spaces. Probab. Theory Related Fields 94 (1992) 135–162. Zbl0767.60073MR1191106
- [3] Z.-Q. Chen and M. Fukushima. One-point extensions of symmetric Markov processes by darning. Probab. Theory Related Fields 141 (2008) 61–112. Zbl1147.60051MR2372966
- [4] Z.-Q. Chen, Z.-M. Ma and M. Röckner. Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994) 1–15. Zbl0811.31002MR1309378
- [5] J. Deny and J. L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953–1954) 305–370. Zbl0065.09903MR74787
- [6] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [7] M. Fukushima and H. Tanaka. Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 419–459. Zbl1083.60065MR2139028
- [8] D. A. Herron and P. Koskela. Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57 (1991) 172–202. Zbl0776.30014MR1191746
- [9] D. Jerison and C. Kenig. Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982) 80–147. Zbl0514.31003MR676988
- [10] P. W. Jones. Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71–78. Zbl0489.30017MR631089
- [11] Z.-M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. Zbl0826.31001
- [12] V. G. Maz’ja. Sobolev Spaces. Springer, Berlin, 1985. MR817985
- [13] L. Schwartz. Théorie des distributions I, II. Hermann, Paris, 1950, 1951. Zbl0042.11405MR209834
- [14] M. L. Silverstein. Symmetric Markov Processes. Lecture Notes in Math. 426. Springer, Berlin, 1974. Zbl0296.60038MR386032
- [15] J. Väisälä. Uniform domains. Tohoku Math. J. 40 (1988) 101–118. Zbl0627.30017MR927080
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.