On unique extension of time changed reflecting brownian motions

Zhen-Qing Chen; Masatoshi Fukushima

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 3, page 864-875
  • ISSN: 0246-0203

Abstract

top
Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.

How to cite

top

Chen, Zhen-Qing, and Fukushima, Masatoshi. "On unique extension of time changed reflecting brownian motions." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 864-875. <http://eudml.org/doc/78048>.

@article{Chen2009,
abstract = {Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r&gt;0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.},
author = {Chen, Zhen-Qing, Fukushima, Masatoshi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {reflecting brownian motion; transience; time change; uniform domain; Sobolev space; BL function space; reflected Dirichlet space; harmonic function; diffusion extension; reflecting Brownian motion},
language = {eng},
number = {3},
pages = {864-875},
publisher = {Gauthier-Villars},
title = {On unique extension of time changed reflecting brownian motions},
url = {http://eudml.org/doc/78048},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Chen, Zhen-Qing
AU - Fukushima, Masatoshi
TI - On unique extension of time changed reflecting brownian motions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 864
EP - 875
AB - Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r&gt;0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
LA - eng
KW - reflecting brownian motion; transience; time change; uniform domain; Sobolev space; BL function space; reflected Dirichlet space; harmonic function; diffusion extension; reflecting Brownian motion
UR - http://eudml.org/doc/78048
ER -

References

top
  1. [1] M. Brelot. Étude et extensions du principe de Dirichlet. Ann. Inst. Fourier 3 (1953–1954) 371–419. Zbl0067.33002MR74540
  2. [2] Z.-Q. Chen. On reflected Dirichlet spaces. Probab. Theory Related Fields 94 (1992) 135–162. Zbl0767.60073MR1191106
  3. [3] Z.-Q. Chen and M. Fukushima. One-point extensions of symmetric Markov processes by darning. Probab. Theory Related Fields 141 (2008) 61–112. Zbl1147.60051MR2372966
  4. [4] Z.-Q. Chen, Z.-M. Ma and M. Röckner. Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994) 1–15. Zbl0811.31002MR1309378
  5. [5] J. Deny and J. L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953–1954) 305–370. Zbl0065.09903MR74787
  6. [6] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  7. [7] M. Fukushima and H. Tanaka. Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 419–459. Zbl1083.60065MR2139028
  8. [8] D. A. Herron and P. Koskela. Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57 (1991) 172–202. Zbl0776.30014MR1191746
  9. [9] D. Jerison and C. Kenig. Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982) 80–147. Zbl0514.31003MR676988
  10. [10] P. W. Jones. Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71–78. Zbl0489.30017MR631089
  11. [11] Z.-M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. Zbl0826.31001
  12. [12] V. G. Maz’ja. Sobolev Spaces. Springer, Berlin, 1985. MR817985
  13. [13] L. Schwartz. Théorie des distributions I, II. Hermann, Paris, 1950, 1951. Zbl0042.11405MR209834
  14. [14] M. L. Silverstein. Symmetric Markov Processes. Lecture Notes in Math. 426. Springer, Berlin, 1974. Zbl0296.60038MR386032
  15. [15] J. Väisälä. Uniform domains. Tohoku Math. J. 40 (1988) 101–118. Zbl0627.30017MR927080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.