Maximal brownian motions
Jean Brossard; Michel Émery; Christophe Leuridan
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 876-886
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBrossard, Jean, Émery, Michel, and Leuridan, Christophe. "Maximal brownian motions." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 876-886. <http://eudml.org/doc/78049>.
@article{Brossard2009,
	abstract = {Let Z=(X, Y) be a planar brownian motion, $\mathcal \{Z\}$ the filtration it generates, andBa linear brownian motion in the filtration $\mathcal \{Z\}$. One says thatB(or its filtration) is maximal if no other linear $\mathcal \{Z\}$-brownian motion has a filtration strictly bigger than that ofB. For instance, it is shown in [In Séminaire de Probabilités XLI 265–278 (2008) Springer] that B is maximal if there exists a linear brownian motion C independent of B and such that the planar brownian motion (B, C) generates the same filtration $\mathcal \{Z\}$ asZ. We do not know if this sufficient condition for maximality is also necessary. We give a necessary condition for B to be maximal, and a sufficient condition which may be weaker than the existence of such a C. This sufficient condition is used to prove that the linear brownian motion ∫(X dY−Y dX)/|Z|, which governs the angular part of Z, is maximal.},
	author = {Brossard, Jean, Émery, Michel, Leuridan, Christophe},
	journal = {Annales de l'I.H.P. Probabilités et statistiques},
	keywords = {brownian filtration; maximal brownian motion; exchange property; Brownian filtration; maximal Brownian motion},
	language = {eng},
	number = {3},
	pages = {876-886},
	publisher = {Gauthier-Villars},
	title = {Maximal brownian motions},
	url = {http://eudml.org/doc/78049},
	volume = {45},
	year = {2009},
}
TY  - JOUR
AU  - Brossard, Jean
AU  - Émery, Michel
AU  - Leuridan, Christophe
TI  - Maximal brownian motions
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2009
PB  - Gauthier-Villars
VL  - 45
IS  - 3
SP  - 876
EP  - 886
AB  - Let Z=(X, Y) be a planar brownian motion, $\mathcal {Z}$ the filtration it generates, andBa linear brownian motion in the filtration $\mathcal {Z}$. One says thatB(or its filtration) is maximal if no other linear $\mathcal {Z}$-brownian motion has a filtration strictly bigger than that ofB. For instance, it is shown in [In Séminaire de Probabilités XLI 265–278 (2008) Springer] that B is maximal if there exists a linear brownian motion C independent of B and such that the planar brownian motion (B, C) generates the same filtration $\mathcal {Z}$ asZ. We do not know if this sufficient condition for maximality is also necessary. We give a necessary condition for B to be maximal, and a sufficient condition which may be weaker than the existence of such a C. This sufficient condition is used to prove that the linear brownian motion ∫(X dY−Y dX)/|Z|, which governs the angular part of Z, is maximal.
LA  - eng
KW  - brownian filtration; maximal brownian motion; exchange property; Brownian filtration; maximal Brownian motion
UR  - http://eudml.org/doc/78049
ER  - 
References
top- [1] S. Attal, K. Burdzy, M. Émery and Y. Hu. Sur quelques filtrations et transformations browniennes. In Séminaire de Probabilités XXIX 56–69. Lecture Notes in Mathematics 1613. Springer, Berlin, 1995. Zbl0835.60073MR1459449
- [2] J. Brossard and C. Leuridan. Filtrations browniennes et compléments indépendants. In Séminaire de Probabilités XLI 265–278. Lecture Notes in Mathematics 1934. Springer, 2008. Zbl1149.60319MR2483736
- [3] M. Émery. On certain almost Brownian filtrations. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 285–305. Zbl1082.60070MR2139021
- [4] D.W. Stroock and M. Yor. Some remarkable martingales. In Séminaire de Probabilités XV 590–603. Lecture Notes in Mathematics 850. Springer, Berlin, 1980. Zbl0456.60048MR622590
- [5] H. von Weizsäcker. Exchanging the order of taking suprema and countable intersections of σ-algebras. Ann. Inst. H. Poincaré Probab. Statist. 19 (1983) 91–100. Zbl0509.60002MR699981
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 