Displaying similar documents to “Maximal brownian motions”

The unscaled paths of branching brownian motion

Simon C. Harris, Matthew I. Roberts (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

For a set ⊂ [0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within . We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles...

Hiding a constant drift

Vilmos Prokaj, Miklós Rásonyi, Walter Schachermayer (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The following question is due to Marc Yor: Let be a brownian motion and =+ . Can we define an -predictable process such that the resulting stochastic integral (⋅) is a brownian motion (without drift) in its own filtration, i.e. an -brownian motion? In this paper we show that by dropping the requirement of -predictability of we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor’s question....

Branching brownian motion with an inhomogeneous breeding potential

J. W. Harris, S. C. Harris (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

This article concerns branching brownian motion (BBM) with dyadic branching at rate || for a particle with spatial position ∈ℝ, where >0. It is known that for >2 the number of particles blows up almost surely in finite time, while for =2 the expected number of particles alive blows up in finite time, although the number of particles alive remains finite almost surely, for all time. We define the right-most particle, , to be the supremum of the spatial positions...

An integral test for the transience of a brownian path with limited local time

Itai Benjamini, Nathanaël Berestycki (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function (), ≥0, consider the measures obtained by conditioning a brownian path so that ≤(), for all ≤, where is the local time spent at the origin by time . It is shown that the measures are tight, and that any weak limit of as →∞ is transient provided that −3/2() is integrable. We conjecture...

Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method

Pierre Raphaël Bertrand, Mehdi Fhima, Arnaud Guillin (2013)

ESAIM: Probability and Statistics

Similarity:

We investigate here the central limit theorem of the increment ratio statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer–Major theorems and an original strategy. A simulation study shows the goodness of fit of this estimator.

Density of paths of iterated Lévy transforms of brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

Similarity:

The Lévy transform of a Brownian motion is the Brownian motion given by = sgn()d; call the Brownian motion obtained from by iterating times this transformation. We establish that almost surely, the sequence of paths ( → ) is dense in Wiener space, for the topology of uniform convergence on compact time intervals.

Density of paths of iterated Lévy transforms of Brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

Similarity:

The Lévy transform of a Brownian motion is the Brownian motion given by = sgn()d; call the Brownian motion obtained from by iterating times this transformation. We establish that almost surely, the sequence of paths ( → ) is dense in Wiener space, for the topology of uniform...

Wiener integral for the coordinate process under the σ-finite measure unifying brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Similarity:

Wiener integral for the coordinate process is defined under the -finite measure unifying Brownian penalisations, which has been introduced by [Najnudel , 345 (2007) 459–466] and [Najnudel , 19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, 258 (2010) 3492–3516] of Cameron-Martin formula for the -finite measure.