Quantitative recurrence in two-dimensional extended processes
Françoise Pène; Benoît Saussol
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 1065-1084
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPène, Françoise, and Saussol, Benoît. "Quantitative recurrence in two-dimensional extended processes." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1065-1084. <http://eudml.org/doc/78053>.
@article{Pène2009,
abstract = {Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ2-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in distribution of the rescaled return time near the origin.},
author = {Pène, Françoise, Saussol, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {return time; random walk; subshift of finite type; recurrence; local limit theorem},
language = {eng},
number = {4},
pages = {1065-1084},
publisher = {Gauthier-Villars},
title = {Quantitative recurrence in two-dimensional extended processes},
url = {http://eudml.org/doc/78053},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Pène, Françoise
AU - Saussol, Benoît
TI - Quantitative recurrence in two-dimensional extended processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1065
EP - 1084
AB - Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ2-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in distribution of the rescaled return time near the origin.
LA - eng
KW - return time; random walk; subshift of finite type; recurrence; local limit theorem
UR - http://eudml.org/doc/78053
ER -
References
top- [1] L. Barreira and B. Saussol. Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219 (2001) 443–463. Zbl1007.37012MR1833809
- [2] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Note in Mathematics 470. Springer, Berlin, 1975. Zbl0308.28010MR2423393
- [3] L. Breiman. Probability. Addison-Wesley, Reading, MA, 1968. Zbl0174.48801MR229267
- [4] P. Collet, A. Galves and B. Schmitt. Repetition time for gibbsian sources. Nonlinearity 12 (1999) 1225–1237. Zbl0945.60017MR1709841
- [5] D. Cheliotis. A note on recurrent random walks. Statist. Probab. Lett. 76 (2006) 1025–1031. Zbl1090.60041MR2269338
- [6] J.-P. Conze. Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergodic Theory Dynam. Systems 19 (1999) 1233–1245. Zbl0973.37007MR1721618
- [7] A. Dvoretzky and P. Erdös. Some problems on random walk in space. In Proc. Berkeley Sympos. Math. Statist. Probab. 353–367. California Univ. Press, Berkeley–Los Angeles, 1951. Zbl0044.14001MR47272
- [8] Y. Guivarc’h and J. Hardy. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré, Probab. Statist. 24 (1988) 73–98. Zbl0649.60041MR937957
- [9] M. Hirata. Poisson law for Axiom A diffeomorphism. Ergodic Theory Dynam. Systems 13 (1993) 533–556. Zbl0828.58026MR1245828
- [10] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001. Zbl0983.60005MR1862393
- [11] S. V. Nagaev. Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 (1957) 378–406. (Translation from Teor. Veroyatn. Primen. 2 (1958) 389–416.) Zbl0078.31804MR94846
- [12] S. V. Nagaev. More exact statement of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6 (1961) 62–81. (Translation from Teor. Veroyatn. Primen 6 (1961) 67–86.) Zbl0116.10602MR131291
- [13] D. Ornstein and B. Weiss. Entropy and data compression. IEEE Trans. Inform. Theory 39 (1993) 78–83. Zbl0764.94003MR1211492
- [14] B. Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete Contin. Dyn. Syst. 15 (2006) 259–267. Zbl1175.37006MR2191396
- [15] B. Saussol, S. Troubetzkoy and S. Vaienti. Recurrence, dimension and Lyapunov exponents. J. Stat. Phys. 106 (2002) 623–634. Zbl1138.37300MR1884547
- [16] K. Schmidt. On joint recurrence. C. R. Acad. Sci. Paris 327 (1998) 837–842. Zbl0923.60090MR1663750
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.