Jump processes, ℒ-harmonic functions, continuity estimates and the Feller property

Ryad Husseini; Moritz Kassmann

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 4, page 1099-1115
  • ISSN: 0246-0203

Abstract

top
Given a family of Lévy measures ν={ν(x, ⋅)}x∈ℝd, the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family ν. Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.

How to cite

top

Husseini, Ryad, and Kassmann, Moritz. "Jump processes, ℒ-harmonic functions, continuity estimates and the Feller property." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1099-1115. <http://eudml.org/doc/78055>.

@article{Husseini2009,
abstract = {Given a family of Lévy measures ν=\{ν(x, ⋅)\}x∈ℝd, the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family ν. Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.},
author = {Husseini, Ryad, Kassmann, Moritz},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {jump processes; Lévy measure; Feller property; martingale problem; integro-differential operators; harmonic functions; a priori estimates},
language = {eng},
number = {4},
pages = {1099-1115},
publisher = {Gauthier-Villars},
title = {Jump processes, ℒ-harmonic functions, continuity estimates and the Feller property},
url = {http://eudml.org/doc/78055},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Husseini, Ryad
AU - Kassmann, Moritz
TI - Jump processes, ℒ-harmonic functions, continuity estimates and the Feller property
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1099
EP - 1115
AB - Given a family of Lévy measures ν={ν(x, ⋅)}x∈ℝd, the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family ν. Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.
LA - eng
KW - jump processes; Lévy measure; Feller property; martingale problem; integro-differential operators; harmonic functions; a priori estimates
UR - http://eudml.org/doc/78055
ER -

References

top
  1. [1] M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet form and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963–1999. Zbl1166.60045MR2465826
  2. [2] R. F. Bass and M. Kassmann. Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc. 357(2) (2005) 837–850 (electronic). Zbl1052.60060MR2095633
  3. [3] R. F. Bass and M. Kassmann. Hölder continuity of harmonic functions with respect to operators of variable orders. Comm. Partial Differential Equations 30 (2005) 1249–1259. Zbl1087.45004MR2180302
  4. [4] R. F. Bass and D. A. Levin. Harnack inequalities for jump processes. Potential Anal. 17(4) (2002) 375–388. Zbl0997.60089MR1918242
  5. [5] R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354(7) (2002) 2933–2953. Zbl0993.60070MR1895210
  6. [6] R. F. Bass, M. Kassmann and T. Kumagai. Symmetric jump processes: Localization, heat kernels, and convergence. Ann. Inst. H. Poincaré. To appear, 2009. Zbl1201.60078
  7. [7] Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A 52(7) (2009) 1423–1445. Zbl1186.60073MR2520585
  8. [8] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108(1) (2003) 27–62. Zbl1075.60556MR2008600
  9. [9] E. De Giorgi. Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957) 25–43. Zbl0084.31901MR93649
  10. [10] S. N. Ethier and T. G. Kurtz. Markov Processes. Wiley, New York, 1986. Zbl0592.60049MR838085
  11. [11] M. Fukushima, Y. Ōshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  12. [12] W. Hoh. The martingale problem for a class of pseudo-differential operators. Math. Ann. 300(1) (1994) 121–147. Zbl0805.47045MR1289834
  13. [13] W. Hoh. A symbolic calculus for pseudo-differential operators generating Feller semigroups. Osaka J. Math. 35(4) (1998) 789–820. Zbl0922.47045MR1659620
  14. [14] R. Husseini and M. Kassmann. Markov chain approximations for symmetric jump processes. Potential Anal. 27(4) (2007) 353–380. Zbl1128.60071MR2353972
  15. [15] N. Jacob. Feller semigroups, Dirichlet forms, and pseudodifferential operators. Forum Math. 4(5) (1992) 433–446. Zbl0759.60078MR1176881
  16. [16] N. Jacob. A class of Feller semigroups generated by pseudo-differential operators. Math. Z. 215(1) (1994) 151–166. Zbl0795.35154MR1254818
  17. [17] N. Jacob. Pseudo Differential Operators and Markov Processes. Vol. III. Imperial College Press, London, 2005. Zbl1076.60003MR2158336
  18. [18] M. Kassmann. A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differential Equations 34(1) (2009) 1–21. Zbl1158.35019MR2448308
  19. [19] T. Komatsu. Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms. Osaka J. Math. 25(3) (1988) 697–728. Zbl0726.35055MR969027
  20. [20] T. Komatsu. Uniform estimates for fundamental solutions associated with non-local Dirichlet forms. Osaka J. Math. 32(4) (1995) 833–860. Zbl0867.35123MR1380729
  21. [21] N. V. Krylov and M. V. Safonov. An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245(1) (1979) 18–20. Zbl0459.60067MR525227
  22. [22] E. M. Landis. Second Order Equations of Elliptic and Parabolic Type. Amer. Math. Soc., Providence, RI, 1998. Zbl0895.35001MR1487894
  23. [23] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958) 931–954. Zbl0096.06902MR100158
  24. [24] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
  25. [25] L. Silvestre. Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3) (2006) 1155–1174. Zbl1101.45004MR2244602
  26. [26] R. Schilling and T. Uemura. Dirichlet forms generated by pseudo differential operators: On the Feller property of the associated stochastic process. Tohoku Math. J. 59 (2007) 401–422. Zbl1141.31006MR2365348
  27. [27] R. Song and Z. Vondraček. Harnack inequality for some classes of Markov processes. Math. Z. 246(1, 2) (2004) 177–202. Zbl1052.60064MR2031452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.