Symmetric jump processes : localization, heat kernels and convergence

Richard F. Bass; Moritz Kassmann; Takashi Kumagai

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 1, page 59-71
  • ISSN: 0246-0203

Abstract

top
We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.

How to cite

top

Bass, Richard F., Kassmann, Moritz, and Kumagai, Takashi. "Symmetric jump processes : localization, heat kernels and convergence." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 59-71. <http://eudml.org/doc/242929>.

@article{Bass2010,
abstract = {We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.},
author = {Bass, Richard F., Kassmann, Moritz, Kumagai, Takashi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {symmetric jump processes; Dirichlet forms; heat kernels; Harnack inequalities; weak convergence; non-local operators},
language = {eng},
number = {1},
pages = {59-71},
publisher = {Gauthier-Villars},
title = {Symmetric jump processes : localization, heat kernels and convergence},
url = {http://eudml.org/doc/242929},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Bass, Richard F.
AU - Kassmann, Moritz
AU - Kumagai, Takashi
TI - Symmetric jump processes : localization, heat kernels and convergence
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 59
EP - 71
AB - We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.
LA - eng
KW - symmetric jump processes; Dirichlet forms; heat kernels; Harnack inequalities; weak convergence; non-local operators
UR - http://eudml.org/doc/242929
ER -

References

top
  1. [1] M. T. Barlow and R. F. Bass. The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 225–257. Zbl0691.60070MR1023950
  2. [2] M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963–1999. Zbl1166.60045MR2465826
  3. [3] M. T. Barlow, A. Grigor’yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. To appear. Zbl1158.60039MR2492992
  4. [4] R. F. Bass and M. Kassmann. Hölder continuity of harmonic functions with respect to operators of variable order. Comm. Partial Diferential Equations 30 (2005) 1249–1259. Zbl1087.45004MR2180302
  5. [5] R. F. Bass and T. Kumagai. Symmetric Markov chains on ℤd with unbounded range. Trans. Amer. Math. Soc. 360 (2008) 2041–2075. Zbl1130.60076MR2366974
  6. [6] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245–287. Zbl0634.60066MR898496
  7. [7] Z. Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108 (2003) 27–62. Zbl1075.60556MR2008600
  8. [8] Z. Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 (2008) 277–317. Zbl1131.60076MR2357678
  9. [9] R. Husseini and M. Kassmann. Markov chain approximations for symmetric jump processes. Potential Anal. 27 (2007) 353–380. Zbl1128.60071MR2353972
  10. [10] D. W. Stroock and W. Zheng. Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 619–649. Zbl0885.60065MR1473568
  11. [11] P. Sztonyk. Regularity of harmonic functions for anisotropic fractional Laplacian. Math. Nachr. To appear. Zbl1194.47044MR2604123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.