The falling apart of the tagged fragment and the asymptotic disintegration of the brownian height fragmentation

Gerónimo Uribe Bravo

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 4, page 1130-1149
  • ISSN: 0246-0203

Abstract

top
We present a further analysis of the fragmentation at heights of the normalized brownian excursion. Specifically we study a representation for the mass of a tagged fragment in terms of a Doob transformation of the 1/2-stable subordinator and use it to study its jumps; this accounts for a description of how a typical fragment falls apart. These results carry over to the height fragmentation of the stable tree. Additionally, the sizes of the fragments in the brownian height fragmentation when it is about to reduce to dust are described in a limit theorem.

How to cite

top

Uribe Bravo, Gerónimo. "The falling apart of the tagged fragment and the asymptotic disintegration of the brownian height fragmentation." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1130-1149. <http://eudml.org/doc/78057>.

@article{UribeBravo2009,
abstract = {We present a further analysis of the fragmentation at heights of the normalized brownian excursion. Specifically we study a representation for the mass of a tagged fragment in terms of a Doob transformation of the 1/2-stable subordinator and use it to study its jumps; this accounts for a description of how a typical fragment falls apart. These results carry over to the height fragmentation of the stable tree. Additionally, the sizes of the fragments in the brownian height fragmentation when it is about to reduce to dust are described in a limit theorem.},
author = {Uribe Bravo, Gerónimo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {self-similar fragmentation; normalized brownian excursion; Self-similar fragmentation; normalized Brownian excursion; stable subordinator},
language = {eng},
number = {4},
pages = {1130-1149},
publisher = {Gauthier-Villars},
title = {The falling apart of the tagged fragment and the asymptotic disintegration of the brownian height fragmentation},
url = {http://eudml.org/doc/78057},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Uribe Bravo, Gerónimo
TI - The falling apart of the tagged fragment and the asymptotic disintegration of the brownian height fragmentation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1130
EP - 1149
AB - We present a further analysis of the fragmentation at heights of the normalized brownian excursion. Specifically we study a representation for the mass of a tagged fragment in terms of a Doob transformation of the 1/2-stable subordinator and use it to study its jumps; this accounts for a description of how a typical fragment falls apart. These results carry over to the height fragmentation of the stable tree. Additionally, the sizes of the fragments in the brownian height fragmentation when it is about to reduce to dust are described in a limit theorem.
LA - eng
KW - self-similar fragmentation; normalized brownian excursion; Self-similar fragmentation; normalized Brownian excursion; stable subordinator
UR - http://eudml.org/doc/78057
ER -

References

top
  1. [1] R. Abraham and J.-F. Delmas. Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141 (2008) 113–154. Zbl1142.60048MR2372967
  2. [2] D. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3–48. Zbl0930.60096MR1673235
  3. [3] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (1998) 1703–1726. Zbl0936.60064MR1675063
  4. [4] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
  5. [5] J. Bertoin. Homogeneous fragmentation processes. Probab. Theory Related Fields 121 (2001) 301–318. Zbl0992.60076MR1867425
  6. [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340. Zbl1002.60072MR1899456
  7. [7] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. Zbl1107.60002MR2253162
  8. [8] J. Bertoin and J. Pitman. Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118 (1994) 147–166. Zbl0805.60076MR1268525
  9. [9] J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389–400. Zbl1004.60046MR1918243
  10. [10] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191–212 (electronic). Zbl1189.60096MR2178044
  11. [11] P. Biane. Relations entre pont et excursion du mouvement brownien réel. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 1–7. Zbl0596.60079MR838369
  12. [12] P. Biane, J. Pitman and M. Yor. Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38 (2001) 435–465 (electronic). Zbl1040.11061MR1848256
  13. [13] M.-E. Caballero and L. Chaumont. Conditioned stable Lévy processes and Lamperti representation. Technical Report PMA-1066, Laboratoire de Probabilités et Modèles Aléatoires, 2006. Zbl1133.60316MR2274630
  14. [14] L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39–54. Zbl0879.60072MR1419491
  15. [15] L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377–403. Zbl0882.60074MR1465814
  16. [16] R. Dong, C. Goldschmidt and J. B. Martin. Coagulation-fragmentation duality, Poisson–Dirichlet distributions and random recursive trees. Ann. Appl. Probab. 16 (2006) 1733–1750. Zbl1123.60061MR2288702
  17. [17] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) 1–147. Zbl1037.60074MR1954248
  18. [18] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (2005) 553–603. Zbl1070.60076MR2147221
  19. [19] P. Fitzsimmons, J. Pitman and M. Yor. Markovian bridges: Construction, Palm interpretation, and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992) 101–134. Progr. Probab. 33. Birkhäuser Boston, Boston, MA, 1993. Zbl0844.60054MR1278079
  20. [20] B. Haas. Equilibrium for fragmentation with immigration. Ann. Appl. Probab. 15 (2005) 1958–1996. Zbl1093.60050MR2152250
  21. [21] B. Haas, J. Pitman and M. Winkel. Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab. (2009). To appear. Available at arXiv:0705.3602v1. Zbl1181.60128MR2546748
  22. [22] T. Jeulin. Semi-martingales et grossissement d’une filtration. Lecture Notes in Mathematics 833. Springer, Berlin, 1980. Zbl0444.60002MR604176
  23. [23] J. Lamperti. Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225. Zbl0274.60052MR307358
  24. [24] J. F. Le Gall. Random real trees. Probab. Surv. 2 (2005) 245–311. Zbl1189.60161MR2203728
  25. [25] J.-F. Le Gall and Y. Le Jan. Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998) 213–252. Zbl0948.60071MR1617047
  26. [26] G. Miermont. Self-similar fragmentations derived from the stable tree. I. Splitting at heights. Probab. Theory Related Fields 127 (2003) 423–454. Zbl1042.60043MR2018924
  27. [27] G. Miermont. Self-similar fragmentations derived from the stable tree. II. Splitting at nodes. Probab. Theory Related Fields 131 (2005) 341–375. Zbl1071.60065MR2123249
  28. [28] M. Perman, J. Pitman and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 (1992) 21–39. Zbl0741.60037MR1156448
  29. [29] J. Pitman and M. Yor. The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997) 855–900. Zbl0880.60076MR1434129
  30. [30] J. Pitman and M. Yor. Infinitely divisible laws associated with hyperbolic functions. Canad. J. Math. 55 (2003) 292–330. Zbl1039.11054MR1969794
  31. [31] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. 293 Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  32. [32] M. L. Silverstein. Classification of coharmonic and coinvariant functions for a Lévy process. Ann. Probab. 8 (1980) 539–575. Zbl0459.60063MR573292
  33. [33] W. Vervaat. A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 (1979) 143–149. Zbl0392.60058MR515820
  34. [34] T. Watanabe. Sample function behavior of increasing processes of class L. Probab. Theory Related Fields 104 (1996) 349–374. Zbl0849.60036MR1376342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.