Intermittency properties in a hyperbolic Anderson problem
Robert C. Dalang; Carl Mueller
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 1150-1164
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. A. Carmona, L. Koralov and S. A. Molchanov. Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stochastic Equations 9 (2001) 77–86. Zbl0972.60050MR1910468
- [2] R. A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994) 1–125. Zbl0925.35074MR1185878
- [3] D. Conus and R. C. Dalang. The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13 (2008) 629–670. Zbl1187.60049MR2399293
- [4] M. Cranston and S. Molchanov. Quenched to annealed transition in the parabolic Anderson problem. Probab. Theory Related Fields 138 (2007) 177–193. Zbl1136.60016MR2288068
- [5] M. Cranston, T. S. Mountford and T. Shiga. Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab. Theory Related Fields 132 (2005) 321–355. Zbl1082.60057MR2197105
- [6] R. C. Dalang. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 (1999) 1–29 (with Correction). Zbl0922.60056MR1684157
- [7] R. C. Dalang and N. E. Frangos. The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998) 187–212. Zbl0938.60046MR1617046
- [8] R. C. Dalang, C. Mueller and R. Tribe. A Feynman–Kac-type formula for the deterministic and stochastic wave equations and other p.d.e.’s. Trans. Amer. Math. Soc. 360 (2008) 4681–4703. Zbl1149.60040MR2403701
- [9] R. C. Dalang and M. Sanz-Solé. Hölder–Sobolev regularity of the solution to the stochastic wave equation in dimension 3. Mem. Amer. Math. Soc. (2009). To appear. Zbl1214.60028MR2512755
- [10] J. Gärtner, W. König and S. A. Molchanov. Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 (2000) 547–573. Zbl0972.60056MR1808375
- [11] J. Gärtner, W. König and S. Molchanov. Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35 (2007) 439–499. Zbl1126.60091MR2308585
- [12] S. Molchanov. Lectures on random media. In Lectures on Probability Theory (Saint-Flour, 1992) 242–411. Lecture Notes in Math. 1581. Springer, Berlin, 1994. Zbl0814.60093MR1307415
- [13] L. Schwartz. Théorie des distributions. Hermann, Paris, 1966. Zbl0149.09501MR209834
- [14] S. F. Shandarin and Ya. B. Zel’dovich. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Modern Phys. 61 (1989) 185–220. MR989562
- [15] S. Tindel and F. Viens. Almost-sure exponential behaviour for a parabolic SPDE on a manifold. Stochastic Process. Appl. 100 (2002) 53–74. Zbl1058.60053MR1919608
- [16] J. B. Walsh. An introduction to stochastic partial differential equations. In Ecole d’été de probabilités de Saint-Flour, XIV—1984265–439. Lecture Notes in Math. 1180. Springer, Berlin, 1986. Zbl0608.60060MR876085
- [17] Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaĭkin and D. D. Sokoloff. Self-excitation of a nonlinear scalar field in a random medium. Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 6323–6325. MR907831
- [18] Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaĭkin and D. D. Sokolov. Intermittency in random media. Uspekhi Fiz. Nauk 152 (1987) 3–32.