Brownian motion and parabolic Anderson model in a renormalized Poisson potential

Xia Chen; Alexey M. Kulik

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 3, page 631-660
  • ISSN: 0246-0203

Abstract

top
A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.

How to cite

top

Chen, Xia, and Kulik, Alexey M.. "Brownian motion and parabolic Anderson model in a renormalized Poisson potential." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 631-660. <http://eudml.org/doc/272022>.

@article{Chen2012,
abstract = {A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.},
author = {Chen, Xia, Kulik, Alexey M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {renormalization; Poisson field; brownian motion in Poisson potential; parabolic Anderson model; Newton’s law of universal attraction; Brownian motion in Poisson potential; Newton's law of universal attraction},
language = {eng},
number = {3},
pages = {631-660},
publisher = {Gauthier-Villars},
title = {Brownian motion and parabolic Anderson model in a renormalized Poisson potential},
url = {http://eudml.org/doc/272022},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Chen, Xia
AU - Kulik, Alexey M.
TI - Brownian motion and parabolic Anderson model in a renormalized Poisson potential
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 631
EP - 660
AB - A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.
LA - eng
KW - renormalization; Poisson field; brownian motion in Poisson potential; parabolic Anderson model; Newton’s law of universal attraction; Brownian motion in Poisson potential; Newton's law of universal attraction
UR - http://eudml.org/doc/272022
ER -

References

top
  1. [1] R. Bass, X. Chen and J. Rosen. Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 626–666. Zbl1181.60035MR2548497
  2. [2] S. Bezerra, S. Tindel and F. Viens. Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann. Probab.36 (2008) 1642–1675. Zbl1149.82032MR2440919
  3. [3] M. Biskup and W. König. Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model. J. Statist. Phys.102 (2001) 1253–1270. Zbl1174.82333MR1830447
  4. [4] V. S. Borkar. Probability Theory: An Advanced Course. Springer, New York, 1995. Zbl0838.60001MR1367959
  5. [5] R. A. Carmona and S. A. Molchanov. Parabolic Anderson Problem and Intermittency. Amer. Math. Soc., Providence, RI, 1994. Zbl0925.35074MR1185878
  6. [6] R. A. Carmona and F. G. Viens. Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics62 (1998) 251–273. Zbl0908.60062MR1615092
  7. [7] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Math. Surv. Mono. 157. Amer. Math. Soc., Providence, RI, 2009. Zbl1192.60002MR2584458
  8. [8] X. Chen. Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related Anderson models. Ann. Probab.40 (2012) 1436–1482. Zbl1259.60094MR2978130
  9. [9] X. Chen and A. M. Kulik. Asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential. Preprint, 2011. Zbl1229.82096MR2812672
  10. [10] X. Chen and J. Rosinski. Spatial Brownian motion in renormalized Poisson potential: A critical case. Preprint, 2011. 
  11. [11] M. Cranston, D. Gauthier and T. S. Mountford. On large deviations for the parabolic Anderson model. Probab. Theory Related Fields147 (2010) 349–378. Zbl1202.60040MR2594357
  12. [12] R. C. Dalang and C. Mueller. Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 1150–1164. Zbl1196.60116MR2572169
  13. [13] A. de Acosta. Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab.11 (1983) 78–101. Zbl0504.60033MR682802
  14. [14] M. D. Donsker and S. R. S. Varadhan. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math.28 (1975) 525–565. Zbl0333.60077MR397901
  15. [15] I. Florescu and F. Viens. Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space. Probab. Theory Related Fields135 (2006) 603–644. Zbl1105.60042
  16. [16] R. Fukushima. Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential. Preprint, 2010. Zbl1251.60075
  17. [17] J. Gärtner, F. den Hollander and G. Maillard. Intermittency on catalysts: Symmetric exclusion. Electron. J. Probab.12 (2007) 516–573. Zbl1129.60061
  18. [18] J. Gärtner and W. König. Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab.10 (2000) 192–217. Zbl1171.60359
  19. [19] J. Gärtner, W. König and S. Molchanov. Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields118 (2000) 547–573. Zbl0972.60056
  20. [20] J. Gärtner and S. A. Molchanov. Parabolic problem for the Anderson model. Comm. Math. Phys.132 (1990) 613–655. Zbl0711.60055
  21. [21] F. Germinet, P. Hislop and A. Klein. Localization for Schrödinger operators with Poisson random potential. J. Europ. Math. Soc.9 (2007) 577–607. Zbl1214.82053MR2314108
  22. [22] S. Harvlin and D. Ben Avraham. Diffusion in disordered media. Adv. in Phys.36 (1987) 695–798. 
  23. [23] T. Komorowski. Brownian motion in a Poisson obstacle field. Séminaire Bourbaki 1998/99 (2000) 91–111. Zbl0964.60091MR1772671
  24. [24] M. B. Marcus and J. Rosinski. Continuity and boundedness of infinitely divisible process: A Poisson point process approach. J. Theoret. Probab.18 (2005) 109–160. Zbl1071.60025MR2132274
  25. [25] L. A. Pastur. The behavior of certain Wiener integrals as t and the density of states of Schrödinger equations with random potential. Teoret. Mat. Fiz.32 (1977) 88–95. Zbl0353.60053MR449356
  26. [26] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. Zbl0516.47023MR710486
  27. [27] T. Povel. Confinement of Brownian motion among Poissonian obstacles in d , d 3 . Probab. Theory Related Fields114 (1999) 177–205. Zbl0943.60082MR1701519
  28. [28] B. S. Rajput and J. Rosinski. Spectral representations of infinitely divisible processes. Probab. Theory Related Fields82 (1989) 451–487. Zbl0659.60078MR1001524
  29. [29] J. Rosinski. On path properties of certain infinitely divisible process. Stochastic Process. Appl.33 (1989) 73–87. Zbl0715.60051MR1027109
  30. [30] G. Stolz. Non-monotonic random Schrödinger operators: The Anderson model. J. Math. Anal. Appl.248 (2000) 173–183. Zbl0974.47034MR1772589
  31. [31] A.-L. Sznitman. Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. Zbl0973.60003MR1717054
  32. [32] M. van den Berg, E. Bolthausen and F. den Hollander. Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields132 (2005) 163–202. Zbl1072.60067MR2199290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.