Superposition rules and stochastic Lie–Scheffers systems
Joan-Andreu Lázaro-Camí; Juan-Pablo Ortega
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 910-931
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLázaro-Camí, Joan-Andreu, and Ortega, Juan-Pablo. "Superposition rules and stochastic Lie–Scheffers systems." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 910-931. <http://eudml.org/doc/78061>.
@article{Lázaro2009,
abstract = {This paper proves a version for stochastic differential equations of the Lie–Scheffers theorem. This result characterizes the existence of nonlinear superposition rules for the general solution of those equations in terms of the involution properties of the distribution generated by the vector fields that define it. When stated in the particular case of standard deterministic systems, our main theorem improves various aspects of the classical Lie–Scheffers result. We show that the stochastic analog of the classical Lie–Scheffers systems can be reduced to the study of Lie group valued stochastic Lie–Scheffers systems; those systems, as well as those taking values in homogeneous spaces are studied in detail. The developments of the paper are illustrated with several examples.},
author = {Lázaro-Camí, Joan-Andreu, Ortega, Juan-Pablo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lie–Scheffers system; superposition rules; stochastic differential equations; Wei–Norman method; Lie-Scheffers system; Wei-Norman method},
language = {eng},
number = {4},
pages = {910-931},
publisher = {Gauthier-Villars},
title = {Superposition rules and stochastic Lie–Scheffers systems},
url = {http://eudml.org/doc/78061},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Lázaro-Camí, Joan-Andreu
AU - Ortega, Juan-Pablo
TI - Superposition rules and stochastic Lie–Scheffers systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 910
EP - 931
AB - This paper proves a version for stochastic differential equations of the Lie–Scheffers theorem. This result characterizes the existence of nonlinear superposition rules for the general solution of those equations in terms of the involution properties of the distribution generated by the vector fields that define it. When stated in the particular case of standard deterministic systems, our main theorem improves various aspects of the classical Lie–Scheffers result. We show that the stochastic analog of the classical Lie–Scheffers systems can be reduced to the study of Lie group valued stochastic Lie–Scheffers systems; those systems, as well as those taking values in homogeneous spaces are studied in detail. The developments of the paper are illustrated with several examples.
LA - eng
KW - Lie–Scheffers system; superposition rules; stochastic differential equations; Wei–Norman method; Lie-Scheffers system; Wei-Norman method
UR - http://eudml.org/doc/78061
ER -
References
top- [1] F. Baudoin. An Introduction to the Geometry of Stochastic Flows. Imperial College Press, London, 2004. Zbl1085.60002MR2154760
- [2] G. Ben Arous. Flots et series de Taylor stochastiques. Probab. Theory Related Fields 81 (1989) 29–77. Zbl0639.60062MR981567
- [3] J. F. Cariñena, J. Grabowski and G. Marmo. Lie–Scheffers Systems: A Geometric Approach. Napoli Series on Physics and Astrophysics 3. Bibliopolis, Naples, 2000. Zbl1221.34025MR1810256
- [4] J. F. Cariñena, J. Grabowski and G. Marmo. Superposition rules, Lie theorem, and partial differential equations. Rep. Math. Phys. 60 (2007) 237–258. Zbl1153.34004MR2374820
- [5] J. F. Cariñena, G. Marmo and J. Nasarre. The nonlinear superposition principle and the Wei–Norman method. Internat. J. Modern Phys. A 13 (1998) 3601–3627. Zbl0928.34025
- [6] J. F. Cariñena and A. Ramos. A new geometric approach to Lie systems and physical applications. Acta Appl. Math. 70 (2002) 43–69. Zbl1003.34007MR1892375
- [7] F. Castell. Asymptotic expansion of stochastic flows. Probab. Theory Related Fields 96 (1993) 225–239. Zbl0794.60054MR1227033
- [8] P. Dazord. Feuilletages à singularités. Nederl. Akad. Wetensch. Indag. Math. 47 (1985) 21–39. Zbl0584.57016MR783003
- [9] K. D. Elworthy. Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Notes Series 70. Cambridge Univ. Press, 1982. Zbl0514.58001MR675100
- [10] K. D. Elworthy, Y. Le Jan and X.-M. Li. On the Geometry of Diffusion Operators and Stochastic Flows. Lecture Notes in Mathematics 1720. Springer, Berlin, 1999. Zbl0942.58004MR1735806
- [11] M. Émery. Stochastic Calculus in Manifolds. Springer, Berlin, 1989. Zbl0697.60060MR1030543
- [12] A. Estrade and M. Pontier. Backward stochastic differential equations in a Lie group. In Séminaire de probabilités (Strasbourg), XXXV. 241–259. Lecture Notes in Math. 1755. Springer, Berlin, 2001. Zbl0980.60085MR1837291
- [13] M. Hakim-Dowek and D. Lepingle. L’exponentielle stochastique des groupes de Lie. In Séminaire de Probabilités (Strasbourg), XX 352–374. Lecture Notes in Math. 1204. Springer, Berlin, 1986. Zbl0609.60009MR942031
- [14] S. Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. Pure and Applied Mathematics 80. Academic Press, New York, 1978. Zbl0451.53038MR514561
- [15] Y.-Z. Hu. Série de Taylor stochastique et formule de Campbell-Hausdorff, d’après Ben Arous. In Séminaire de Probabiliés (Strasbourg), XXVI 579–586. Lecture Notes in Math. 1526. Springer, Berlin, 1992. Zbl0766.60069MR1232020
- [16] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry II. Tracts in Mathematics 15. Wiley, New York, 1969. Zbl0175.48504
- [17] H. Kunita. On the representation of solutions of stochastic differential equations. In Séminaire de Probabilités (Strasbourg), XIV 282–304. Lecture Notes in Math. 784. Springer, Berlin, 1980. Zbl0438.60047MR580134
- [18] J.-A. Lázaro-Camí and J.-P. Ortega. Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations. Stoch. Dyn. (2009). To appear. Available at http://arxiv.org/abs/0705.3156. Zbl1187.60045MR2502472
- [19] M. Liao. Lévy Processes in Lie Groups. Cambridge Tracts in Mathematics 162. Cambridge Univ. Press, 2004. Zbl1076.60004MR2060091
- [20] S. Lie. Vorlesungen über Continuierliche Gruppen mit Geometrischen und Anderen Andwendungen. Teubner, Leipzig, 1893. (G. Scheffers.) Zbl0248.22010MR392458JFM25.0623.02
- [21] T. J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. Zbl0923.34056MR1654527
- [22] Malliavin, P.Géométrie Différentielle Stochastique. Séminaire de Mathématiques Supérieures 64. Presses de l’Université de Montréal, 1978. Zbl0393.60062
- [23] R. Palais. A global formulation of the Lie theory on transformation groups. Mem. Amer. Math. Soc. 22 (1957) 95–97. Zbl0178.26502MR121424
- [24] P. Stefan. Accessibility and foliations with singularities. Bull. Amer. Math. Soc. 80 (1974) 1142–1145. Zbl0293.57015MR353362
- [25] P. Stefan. Accessible sets, orbits and foliations with singularities. Proc. Lond. Math. Soc. 29 (1974) 699–713. Zbl0342.57015MR362395
- [26] H. Sussman. Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973) 171–188. Zbl0274.58002MR321133
- [27] J. Wei and E. Norman. Lie algebraic solution of linear differential equations. J. Math. Phys. 4 (1963) 575–581. Zbl0133.34202MR149053
- [28] J. Wei and E. Norman. On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15 (1964) 327–334. Zbl0119.07202MR160009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.