A homotopy method for solving an equation of the type - Δ u = F ( u )

Christophe Devys; Jean-Michel Morel; P. Witomski

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 4, page 205-222
  • ISSN: 0294-1449

How to cite

top

Devys, Christophe, Morel, Jean-Michel, and Witomski, P.. "A homotopy method for solving an equation of the type $- \Delta u = F(u)$." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 205-222. <http://eudml.org/doc/78073>.

@article{Devys1984,
author = {Devys, Christophe, Morel, Jean-Michel, Witomski, P.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Laplace equation; homotopy continuation method; Poisson equation; pseudo- inverse; pseudodeterminant},
language = {eng},
number = {4},
pages = {205-222},
publisher = {Gauthier-Villars},
title = {A homotopy method for solving an equation of the type $- \Delta u = F(u)$},
url = {http://eudml.org/doc/78073},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Devys, Christophe
AU - Morel, Jean-Michel
AU - Witomski, P.
TI - A homotopy method for solving an equation of the type $- \Delta u = F(u)$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 205
EP - 222
LA - eng
KW - Laplace equation; homotopy continuation method; Poisson equation; pseudo- inverse; pseudodeterminant
UR - http://eudml.org/doc/78073
ER -

References

top
  1. [1] Abraham- Robbin, Transversal Mappings and Flows. W. A. Benjamin, Inc., 1967. Zbl0171.44404MR240836
  2. [2] R.A. Adams, Sobolev Spaces. Academic Press, New York, 1975. Zbl0314.46030MR450957
  3. [3] J.C. Alexander and J.A. Yorke, A numerical continuation method that works generically. University of Maryland, Dept. of Math., MD 77-9, JA, TR 77-9, 1977. 
  4. [4] S.N. Chow, J. Mallet-Paret and J.A. Yorke, Finding zeros of maps: Homotopy methods that are constructive with probability one. Math. Comp., t. 32, 1978, p. 887-899. Zbl0398.65029MR492046
  5. [5] B.C. Eaves and R. Saigal, Homotopies for computation of fixed points on unbounded regions, Mathematical Programming, t. 3, n° 2, 1972, p. 225-237. Zbl0258.65060MR314028
  6. [6] T. Kato, Perturbation theory for nonlinear operators. Springer Verlag, 1966. Zbl0148.12601MR203473
  7. [7] R.B. Kellog, T.Y. Li and J. Yorke, A Method of Continuation for Calculating a Brouwer Fixed Point, in: Computing Fixed Points with Applications, S. Karamardian, ed., Academic Press, New York, 1977. Zbl0426.90094MR448864
  8. [8] S. Lang, Analysis, Madison-Wesley Publishing Company, 1968. Zbl0159.34303
  9. [9] S. Smale, An infinite dimensional version of Sard's theorem. American Journal of Math., t. 87, 1965, p. 861-866. Zbl0143.35301MR185604
  10. [10] S. Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econ., t. 3, p. 1-14. Zbl0354.90018MR411577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.