Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries

Mario Girardi

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 4, page 285-294
  • ISSN: 0294-1449

How to cite

top

Girardi, Mario. "Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 285-294. <http://eudml.org/doc/78075>.

@article{Girardi1984,
author = {Girardi, Mario},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetric, starshaped energy surface; existence; periodic solutions; Hamiltonian systems with N degrees of freedom; symmetric periodic solution; sufficient condition},
language = {eng},
number = {4},
pages = {285-294},
publisher = {Gauthier-Villars},
title = {Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries},
url = {http://eudml.org/doc/78075},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Girardi, Mario
TI - Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 285
EP - 294
LA - eng
KW - symmetric, starshaped energy surface; existence; periodic solutions; Hamiltonian systems with N degrees of freedom; symmetric periodic solution; sufficient condition
UR - http://eudml.org/doc/78075
ER -

References

top
  1. [1] A. Ambrosetti, G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Eq., t. 43, 1981, p. 1-6. Zbl0492.70018
  2. [2] A. Ambrosetti, G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian systems, Math. Annalen, t. 255, 1981, p. 405-421. Zbl0466.70022MR615860
  3. [3] A. Ambrosetti, P.H. Rabinowitz, Dual variational method in critical point theory and applications, J. Functional Analysis, t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
  4. [4] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of O. D. E. Comm. Pure Appl. Math., t. 34, 1981, p. 393-432. Zbl0447.34040MR615624
  5. [5] V. Benci, On the critical point theory for indefinite functional in the presence of symmetries to appear in Trans. A. M. S. Zbl0504.58014MR675067
  6. [6] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Sur le nombre des orbites périodique des équations de Hamilton sur une surface étoilée, note aux C. R. A. S., t. A, Paris, to appear. Zbl0551.70010
  7. [7] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Existence of Multiple Periodic Orbits on Star-shaped Hamilton surfaces, preprint. Zbl0542.58029MR784474
  8. [8] I. Ekeland, J.M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
  9. [9] H. Hofer, A simple proof for a result of I. Ekeland and J. M. Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface, to appear on B. U. M. I. 
  10. [10] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 724-747. Zbl0346.34024MR426052
  11. [11] P.H. Rabinowitz, Periodic Solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. Zbl0358.70014MR467823
  12. [12] P.H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 33, 1980, p. 603-633. Zbl0425.34024MR586414
  13. [13] E.W.C. Van Groesen, Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian system. Preprint. 
  14. [14] A. Weinstein, Normal mode for nonlinear Hamiltonian systems, Inv. Math., t. 20, 1973, p. 47-57. Zbl0264.70020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.