Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 4, page 285-294
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGirardi, Mario. "Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 285-294. <http://eudml.org/doc/78075>.
@article{Girardi1984,
author = {Girardi, Mario},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetric, starshaped energy surface; existence; periodic solutions; Hamiltonian systems with N degrees of freedom; symmetric periodic solution; sufficient condition},
language = {eng},
number = {4},
pages = {285-294},
publisher = {Gauthier-Villars},
title = {Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries},
url = {http://eudml.org/doc/78075},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Girardi, Mario
TI - Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 285
EP - 294
LA - eng
KW - symmetric, starshaped energy surface; existence; periodic solutions; Hamiltonian systems with N degrees of freedom; symmetric periodic solution; sufficient condition
UR - http://eudml.org/doc/78075
ER -
References
top- [1] A. Ambrosetti, G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Eq., t. 43, 1981, p. 1-6. Zbl0492.70018
- [2] A. Ambrosetti, G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian systems, Math. Annalen, t. 255, 1981, p. 405-421. Zbl0466.70022MR615860
- [3] A. Ambrosetti, P.H. Rabinowitz, Dual variational method in critical point theory and applications, J. Functional Analysis, t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
- [4] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of O. D. E. Comm. Pure Appl. Math., t. 34, 1981, p. 393-432. Zbl0447.34040MR615624
- [5] V. Benci, On the critical point theory for indefinite functional in the presence of symmetries to appear in Trans. A. M. S. Zbl0504.58014MR675067
- [6] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Sur le nombre des orbites périodique des équations de Hamilton sur une surface étoilée, note aux C. R. A. S., t. A, Paris, to appear. Zbl0551.70010
- [7] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Existence of Multiple Periodic Orbits on Star-shaped Hamilton surfaces, preprint. Zbl0542.58029MR784474
- [8] I. Ekeland, J.M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
- [9] H. Hofer, A simple proof for a result of I. Ekeland and J. M. Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface, to appear on B. U. M. I.
- [10] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 724-747. Zbl0346.34024MR426052
- [11] P.H. Rabinowitz, Periodic Solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. Zbl0358.70014MR467823
- [12] P.H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 33, 1980, p. 603-633. Zbl0425.34024MR586414
- [13] E.W.C. Van Groesen, Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian system. Preprint.
- [14] A. Weinstein, Normal mode for nonlinear Hamiltonian systems, Inv. Math., t. 20, 1973, p. 47-57. Zbl0264.70020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.