Problème de Cauchy pour des systèmes hyperboliques semi-linéaires
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 6, page 453-478
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBachelot, Alain. "Problème de Cauchy pour des systèmes hyperboliques semi-linéaires." Annales de l'I.H.P. Analyse non linéaire 1.6 (1984): 453-478. <http://eudml.org/doc/78085>.
@article{Bachelot1984,
author = {Bachelot, Alain},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; semilinear hyperbolic systems; Schrödinger-Klein-Gordon equations; coupled Schrödinger equations; global existence; uniqueness; a-priori-bounds; Dirac-Klein-Gordon system; Yukawa coupling; local existence},
language = {fre},
number = {6},
pages = {453-478},
publisher = {Gauthier-Villars},
title = {Problème de Cauchy pour des systèmes hyperboliques semi-linéaires},
url = {http://eudml.org/doc/78085},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Bachelot, Alain
TI - Problème de Cauchy pour des systèmes hyperboliques semi-linéaires
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 6
SP - 453
EP - 478
LA - fre
KW - Cauchy problem; semilinear hyperbolic systems; Schrödinger-Klein-Gordon equations; coupled Schrödinger equations; global existence; uniqueness; a-priori-bounds; Dirac-Klein-Gordon system; Yukawa coupling; local existence
UR - http://eudml.org/doc/78085
ER -
References
top- [1] A. Bachelot, Problème de Cauchy pour des systèmes de Klein-Gordon-Schroedinger. C. R. Acad. Sc. Paris, t. 296, 1983, p. 525-528. Zbl0538.35016MR703220
- [2] J.B. Baillon et J.M. Chadam, The Cauchy problem for the coupled Schroedinger-Klein-Gordon equations ; in Contemporary Developments in Continuum Mechanics Zbl0404.35084
- and Partial differential equations, G. M. de la Penha, L. A. Medeiros (Eds), North-Holland Publishing Company, 1978.
- [3] M. Balabane, H. Emani-Rad, Pseudodifferential parabolic systems in Lp(Rn) ; in « Contributions to nonlinear partial differential equations », C. Bardos, A. Damlamian, J. I. Diaz, J. Hernandez (Eds), Research Notes in Maths 89, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983. Zbl0526.47021MR730790
- [4] Ph. Brenner, The Cauchy problem for systems in Lp and Lp,α, Ark. Mat., t. 11, 1973, p. 75-101. Zbl0256.35006MR324249
- [5] Ph. Brenner, V. Thomee, L.B. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Math., t. 434, Springer-Verlag, Berlin, Heidelberg, New-York, 1975. Zbl0294.35002MR461121
- [6] J. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension ; J. Func. Anal., t. 13, 1973, p. 173-184. Zbl0264.35058MR368640
- [7] J. Chadam, Asymptotic behaviour of equations arising in quantum field theory ; J. Applic. Anal., t. 3, 1973, p. 377-402. Zbl0339.35059MR411438
- [8] J. Chadam, R. Glassey, On the Maxwell-Dirac equations with zero magnetic field and their solutions in two space dimensions ; J. Math. Anal. and Appl., t. 53, 1976, p. 495-507. Zbl0324.35076MR413833
- [9] J. Chadam, R. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions ; Arch. Rat. Mech. Anal., t. 54, 1974, p. 223-237. Zbl0285.35042MR369952
- [10] Y. Choquet-Bruhat, Solutions globales des equations de Maxwell-Dirac-Klein-Gordon (masses nulles) ; C. R. Acad. Sc. Paris, t. 292, 1981, p. 153-158. Zbl0498.35053MR610307
- [11] G. Da Prato, E. Giusti, Equazioni di Schrödinger e delle onde per l'operatore di Laplace iterato in Lp(Rn); Ann. Mat. Pura e Appl., t. 76, 1967, p. 377-397. Zbl0171.07702MR224971
- [12] I. Fukuda, M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations, I, Bull. Sci. Engeg. Res. Lab. Waseda Univ., t. 69, 1975, p. 51-62. Zbl0313.35065MR390555
- [13] I. Fukuda, M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations, II, J. Math. Anal. and Applic., t. 66, 1978, p. 358-378. Zbl0396.35082MR515899
- [14] I. Fukuda, M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations, III, Math. Japonica, t. 24, n° 3, 1979, p. 307-321. Zbl0415.35071MR550215
- [15] L. Gross, The Cauchy problem for the coupled Maxwell-Dirac equations, Comm. Pure and Appl. Math., t. 19, 1966, p. 1-15. Zbl0137.32401MR190520
- [16] E.J. Holder, JR, On the existence, scattering, and blow up of solutions to systems of nonlinear Schrödinger equations ; Indiana Univ. Math. J., t. 30, 1981, p. 653-673. Zbl0595.35034MR625596
- [17] L. Hörmander, Estimates for translation invariant operators in Lp-spaces ; Acta Math., t. 104, 1960, p. 93-140. Zbl0093.11402MR121655
- [18] W. Littman, The wave operator and Lp norms ; J. Math. Mech., t. 12, 1963, p. 55-68. Zbl0127.31705MR146521
- [19] B. Marshall, W. Strauss, S. Wainger, Lp-Lp' estimates for the Klein-Gordon equation; J. Math. Pures et Appl., t. 59, 1980, p. 417-440. Zbl0457.47040MR607048
- [20] J. Peral, Lp estimates for the wave equation ; J. Func. Anal., t. 36, 1980, p. 114-145. Zbl0442.35017MR568979
- [21] M. Reed, Abstract nonlinear wave equations ; Lecture Notes in Math., t. 507, Springer-Verlag, 1976. Zbl0317.35002
- [22] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 2, Fourier analysis, Self adjointness, Academic Press, New York. 1975. Zbl0308.47002
- [23] J. Segal, Nonlinear semi-groups ; Ann. Math., t. 78, 1963, p. 339-364. Zbl0204.16004MR152908
- [24] S. Sjöstrand, On the Riesz means of solutions of Schrödinger equation ; Ann. Scuola Norm. Sup. Pisa, t. 24, 1970, p. 331-348. Zbl0201.14901MR270219
Citations in EuDML Documents
top- Agus Leonardi Soenjaya, Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling
- Jean Ginibre, Giorgio Velo, Diffusion à longue portée et opérateurs d’ondes modifiés pour le système Ondes-Schrödinger
- Alain Bachelot, Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.