A class of convex non-coercive functionals and masonry-like materials

G. Anzellotti

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 4, page 261-307
  • ISSN: 0294-1449

How to cite

top

Anzellotti, G.. "A class of convex non-coercive functionals and masonry-like materials." Annales de l'I.H.P. Analyse non linéaire 2.4 (1985): 261-307. <http://eudml.org/doc/78099>.

@article{Anzellotti1985,
author = {Anzellotti, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-coercive integral functionals; static equilibrium; elastic materials; rocks; concrete; walls; masonry-like materials},
language = {eng},
number = {4},
pages = {261-307},
publisher = {Gauthier-Villars},
title = {A class of convex non-coercive functionals and masonry-like materials},
url = {http://eudml.org/doc/78099},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Anzellotti, G.
TI - A class of convex non-coercive functionals and masonry-like materials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 4
SP - 261
EP - 307
LA - eng
KW - non-coercive integral functionals; static equilibrium; elastic materials; rocks; concrete; walls; masonry-like materials
UR - http://eudml.org/doc/78099
ER -

References

top
  1. [1] G. Anzellotti, Dirichlet problem and removable singularities for functionals with linear growth. Boll. U. M. I. Anal. Funz. Appl. Serie V, t. 28C, n° 1, 1981, p. 141-159. Zbl0472.49030MR631574
  2. [2] G. Anzellotti, On the existence of the rates of stress and displacement for the Prandtl-Reuss plasticity. Q. Appl. Math., July 1983. Zbl0521.73030MR719504
  3. [3] G. Anzellotti, On the extremal stress and displacement in Hencky plasticity. Duke Math. J., t. 51, n° 1, 1984, p. 133-147. Zbl0548.73022MR744291
  4. [4] G. Anzellotti, Pairings between measures and bounded functions. Annali Mat Pura e Appl., IV, t. 135, 1983, p. 293-318. Zbl0572.46023MR750538
  5. [5] G. Anzellotti, M. Giaquinta, Funzioni BV e tracce. Rend. Sem. Mat. Padova, t. 60, 1978, p. 1-21. Zbl0432.46031MR555952
  6. [6] G. Anzellotti, M. Giaquinta, Existence of the displacement field for an elastoplastic body subject to Hencky's law and Von Mises yield condition. Manuscripta Math., t. 32, 1980, p. 101-136. Zbl0465.73022MR592713
  7. [7] G. Anzellotti, M. Giaquinta, On the existence of the fields of stress and displacement for an elasto-perfectly plastic body in static equilibrium. J. Math. Pures et Appl., t. 61, 1982, p. 219-244. Zbl0467.73044MR690394
  8. [8] G. Anzellotti, S. Luckhaus, Dynamical evolution of elasto-perfectly plastic bodies. Preprint n° 211, April 1983, S. F. B., Heidelberg University. Zbl0616.73047MR868903
  9. [9] E. De Giorgi, Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio a n-dimensioni. Ricerche di Mat., t. 4, 1955, p. 95-113. Zbl0066.29903MR74499
  10. [10] S. Di Pasquale, Statica dei solidi murari: teoria ed esperienze. Dipart. di Costruzione, Università di Firenze. Preprint, 1984. 
  11. [11] G. Duvaut, J.L. Lions, Les Inéquations en mécanique et physique. Dunod, Paris, 1972. Zbl0298.73001MR464857
  12. [12] H. Federer, Geometric Measure Theory. Springer Verlag, 1969. Zbl0176.00801MR257325
  13. [13] M. Giaquinta, On the Dirichlet Problem for surfaces of prescribed mean curvature. Manuscripta Math., t. 12, 1974, p. 73-86. Zbl0276.35038MR336532
  14. [14] M. Giaquinta, E. Giusti, Researches on the statics of masonry structures. To appear in Arch. Rat. Mech. Anal. Zbl0656.73012
  15. [15] E. Giusti, On the equation of surfaces of prescribed mean curvature. Inv. Math., t. 46, 1978, p. 111-137. Zbl0381.35035MR487722
  16. [16] E. Giusti, Functions of bounded variation and minimal surfaces. Birkäuser Verlag, 1984. Zbl0545.49018MR775682
  17. [17] R. Hardt, D. Kinderlehrer, Elastic plastic deformation. Appl. Math. and Optimization, t. 10, 1983, p. 203-246. Zbl0522.73029MR722488
  18. [18] J. Heyman, Equilibrium of shell structures. Clarendon press, Oxford, 1977. Zbl0368.73001
  19. [19] R.V. Kohn, Ph. D. Thesis. Princeton University, 1979. 
  20. [20] U. Massari, M. Miranda, Minimal surfaces of codimension one. Notas de Matematica. North-Holland publishing Co. Zbl0565.49030MR795963
  21. [21] N.J. Meyers, J. Serrin, H = W.Proc. Nat. Acad. of Sci. U. S. A., t. 51, 1964, p. 1055-1056. Zbl0123.30501MR164252
  22. [22] Yu.G. Reschetniak, Weak convergence of completely additive vector functions on a set. Sibirskii Mat Zhurnal, t. 9, 1968, p. 1386-1394. (Translated). Zbl0176.44402MR240274
  23. [23] G. Strang, R. Temam, Functions of bounded deformation. Arch. Rat. Mech., t. 75, 1980, p. 7-21. Zbl0472.73031MR592100
  24. [24] P.M. Suquet, Sur un nouveau cadre fonctionnel pour les équations de la Plasticité. Compt. Rend. Ac. Sci. Paris, A, t. 286, 1978, p. 1129-1132. Zbl0378.35056MR495547
  25. [25] P.M. Suquet, Sur les equations de la plasticité : existence et régularité des solutions. J. Mec., t. 21, 1981, p. 3-39. Zbl0474.73030MR618942
  26. [26] R. Temam, An existence theorem for a variational problem of plasticity. In Non-linear problems of analysis in geometry and mechanics. Atteia, Bancel and Gumowsky eds. Pitman, London, 1981. Zbl0455.73036MR616857
  27. [27] R. Temam, On the continuity of the trace of vector-functions with bounded deformation. Applicable Anal., t. 11, 1981, p. 291-302. Zbl0504.46027MR611403
  28. [28] R. Temam, Problèmes Mathématiques en plasticité. Gauthier-Villars. Paris, 1983. Zbl0547.73026MR711964

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.