A new degree for -invariant gradient mappings and applications
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 5, page 329-370
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDancer, E. N.. "A new degree for $S^1$-invariant gradient mappings and applications." Annales de l'I.H.P. Analyse non linéaire 2.5 (1985): 329-370. <http://eudml.org/doc/78101>.
@article{Dancer1985,
author = {Dancer, E. N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-invariant gradient maps; generic homotopies; degree; global bifurcation; Hamiltonian systems; elliptic equations},
language = {eng},
number = {5},
pages = {329-370},
publisher = {Gauthier-Villars},
title = {A new degree for $S^1$-invariant gradient mappings and applications},
url = {http://eudml.org/doc/78101},
volume = {2},
year = {1985},
}
TY - JOUR
AU - Dancer, E. N.
TI - A new degree for $S^1$-invariant gradient mappings and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 5
SP - 329
EP - 370
LA - eng
KW - -invariant gradient maps; generic homotopies; degree; global bifurcation; Hamiltonian systems; elliptic equations
UR - http://eudml.org/doc/78101
ER -
References
top- [1] R. Abraham and J. Robbins, Transversal mappings and flows, Reading, Benjamin, 1967. Zbl0171.44404MR240836
- [2] S. Agmon, Lectures on elliptic boundary-value problems, Princeton, Van Nostrand, 1965. Zbl0142.37401MR178246
- [3] J.C. Alexander and J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., t. 100, 1978, p. 263-292. Zbl0386.34040MR474406
- [4] H. Amann and E. Zehnder, Non-trivial solutions for a class of non-linear differential equations, Ann. Scuola Norm Sup Pisa, t. 7, 1980, p. 539-693. Zbl0452.47077MR600524
- [5] M.S. Berger, Nonlinearity and functional analysis, New York, Academic Press, 1977. Zbl0368.47001MR488101
- [6] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., t. 39, 1971, p. 77-111. Zbl0214.37703MR313811
- [7] R. Bohme, Die Losung der Verzweignungsgleichugen für nichtlineare Eigenwert-probleme, Math. Z., t. 127, 1972, p. 105-126. Zbl0254.47082MR312348
- [8] G. Bredon, Introduction to compact transformation groups, New York, Academic Press, 1972. Zbl0246.57017MR413144
- [9] H. Brezis, Opérateurs maximaux monotones, Amsterdam, North Holland, 1973. MR348562
- [10] S. Chow and J. Mallet-Paret, The Fuller index and global bifurcation, J. Diff. Eqns., t. 29, 1978, p. 66-85. Zbl0369.34020MR492560
- [11] S.N. Chow, J. Mallet-Paret and J. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Analysis, t. 2, 1978, p. 753-763. Zbl0407.47039MR512165
- [12] C. Conley, Isolated invariant sets and the Morse Index, CBMS regional conferences in mathematics, no. 38, Providence, Amer. Math. Soc., 1978. Zbl0397.34056MR511133
- [13] M. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., t. 8, 1971, p. 321-340. Zbl0219.46015MR288640
- [14] E.N. Dancer, Bifurcation in real Banach space, Proc. London Math. Soc., t. 23, 1971, p. 699-734. Zbl0227.47050MR305166
- [15] E.N. Dancer, Global solution branches for positive mappings, Archives Rat. Mech. Anal., t. 52, 1973, p. 181-192. Zbl0275.47043MR353077
- [16] E.N. Dancer, The G-invariant implicit function theorem in infinite-dimensions, Proc. Royal Soc. Edinburgh, t. 92 A, 1982, p. 13-30. Zbl0512.58011MR667122
- [17] E.N. Dancer, An implicit function theorem with symmetries and its application to nonlinear eigenvalue problems, Bull. Austral. Math. Soc., t. 21, 1980, p. 81-91. Zbl0414.58012MR569089
- [18] E.N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns., t. 39, 1980, p. 404-437. Zbl0417.34042MR590000
- [19] E.N. Dancer, On non-radially symmetric bifurcation, J. London Math. Soc., t. 20, 1979, p. 287-292. Zbl0418.35015
- [20] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J., t. 23, 1974, p. 1069-1076. Zbl0276.47051MR348567
- [21] E.N. Dancer, Perturbation of zeros in the presence of symmetries, to appear in J. Austral. Math. Soc. Zbl0535.58013MR720004
- [22] E.N. Dancer, Remarks on S1-symmetries and a special degree for S1-invariant gradient mappings, submitted.
- [23] E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Ang. Math., t. 350, 1984, p. 1-22. Zbl0525.58012MR743531
- [24] E. Fadell and R. Rabinowitz, Generalized cohomology theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., t. 45, 1978, p. 139-174. Zbl0403.57001MR478189
- [25] I. Gokhberg, P. Lancaster and L. Rodman, Perturbation of H-self-adjoint matrices with applications to differential equations, Integral equations and operator theory, t. 5, 1982, p. 718-757. Zbl0511.15010MR697011
- [26] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc., t. 174, 1976. Zbl0338.47032MR425696
- [27] T. Kato, Perturbation theory for linear operators, Berlin, Springer, 1966. Zbl0148.12601
- [28] N. Lloyd, Degree theory, Cambridge, Cambridge University Press, 1978. Zbl0367.47001MR493564
- [29] J. Logan, Invariant variational principles, New York, Academic Press, 1977. MR500376
- [30] R. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc., t. 32, 1976, p. 251-278. Zbl0316.47042MR402561
- [31] R. Narasimhan, Lectures on topics in analysis, Bombay, Tata Institute, 1965. Zbl0185.33601MR212837
- [32] R. Nussbaum, The fixed point index for locally condensing maps, Ann. Mat. Pura Appl., t. 89, 1971, p. 217-258. Zbl0226.47031MR312341
- [33] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., t. 7, 1971, p. 487-513. Zbl0212.16504MR301587
- [34] P.H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., t. 25, 1977, p. 412-424. Zbl0369.47038MR463990
- [35] D. Sattinger, Group theoretic methods in bifurcation theory, Lecture notes in mathematics, no. 762, Berlin, Springer, 1979. Zbl0414.58013MR551626
- [36] C. Siegel and J. Moser, Lectures on celestial mechanics, Berlin, Springer-Verlag, 1971. Zbl0312.70017MR502448
- [37] M. Vainberg, Variational methods for the study of nonlinear equations, San Francisco, Holden-Day, 1964.
- [38] G. Wasserman, Equivariant differential topology, Topology, t. 8, 1969, p. 127-150. Zbl0215.24702MR250324
- [39] P. Wolfe, Equilibrium states of an elastic conductor in a magnetic field: a paradigm of bifurcation theory, Trans. Amer. Math. Soc., t. 278, 1983, p. 377-388. Zbl0519.73093MR697082
- [40] P. Wolfe, Rotating states of an elastic conductor, preprint. Zbl0565.73093MR826837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.