A new degree for S 1 -invariant gradient mappings and applications

E. N. Dancer

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 5, page 329-370
  • ISSN: 0294-1449

How to cite

top

Dancer, E. N.. "A new degree for $S^1$-invariant gradient mappings and applications." Annales de l'I.H.P. Analyse non linéaire 2.5 (1985): 329-370. <http://eudml.org/doc/78101>.

@article{Dancer1985,
author = {Dancer, E. N.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-invariant gradient maps; generic homotopies; degree; global bifurcation; Hamiltonian systems; elliptic equations},
language = {eng},
number = {5},
pages = {329-370},
publisher = {Gauthier-Villars},
title = {A new degree for $S^1$-invariant gradient mappings and applications},
url = {http://eudml.org/doc/78101},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Dancer, E. N.
TI - A new degree for $S^1$-invariant gradient mappings and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 5
SP - 329
EP - 370
LA - eng
KW - -invariant gradient maps; generic homotopies; degree; global bifurcation; Hamiltonian systems; elliptic equations
UR - http://eudml.org/doc/78101
ER -

References

top
  1. [1] R. Abraham and J. Robbins, Transversal mappings and flows, Reading, Benjamin, 1967. Zbl0171.44404MR240836
  2. [2] S. Agmon, Lectures on elliptic boundary-value problems, Princeton, Van Nostrand, 1965. Zbl0142.37401MR178246
  3. [3] J.C. Alexander and J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., t. 100, 1978, p. 263-292. Zbl0386.34040MR474406
  4. [4] H. Amann and E. Zehnder, Non-trivial solutions for a class of non-linear differential equations, Ann. Scuola Norm Sup Pisa, t. 7, 1980, p. 539-693. Zbl0452.47077MR600524
  5. [5] M.S. Berger, Nonlinearity and functional analysis, New York, Academic Press, 1977. Zbl0368.47001MR488101
  6. [6] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., t. 39, 1971, p. 77-111. Zbl0214.37703MR313811
  7. [7] R. Bohme, Die Losung der Verzweignungsgleichugen für nichtlineare Eigenwert-probleme, Math. Z., t. 127, 1972, p. 105-126. Zbl0254.47082MR312348
  8. [8] G. Bredon, Introduction to compact transformation groups, New York, Academic Press, 1972. Zbl0246.57017MR413144
  9. [9] H. Brezis, Opérateurs maximaux monotones, Amsterdam, North Holland, 1973. MR348562
  10. [10] S. Chow and J. Mallet-Paret, The Fuller index and global bifurcation, J. Diff. Eqns., t. 29, 1978, p. 66-85. Zbl0369.34020MR492560
  11. [11] S.N. Chow, J. Mallet-Paret and J. Yorke, Global Hopf bifurcation from a multiple eigenvalue, Nonlinear Analysis, t. 2, 1978, p. 753-763. Zbl0407.47039MR512165
  12. [12] C. Conley, Isolated invariant sets and the Morse Index, CBMS regional conferences in mathematics, no. 38, Providence, Amer. Math. Soc., 1978. Zbl0397.34056MR511133
  13. [13] M. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., t. 8, 1971, p. 321-340. Zbl0219.46015MR288640
  14. [14] E.N. Dancer, Bifurcation in real Banach space, Proc. London Math. Soc., t. 23, 1971, p. 699-734. Zbl0227.47050MR305166
  15. [15] E.N. Dancer, Global solution branches for positive mappings, Archives Rat. Mech. Anal., t. 52, 1973, p. 181-192. Zbl0275.47043MR353077
  16. [16] E.N. Dancer, The G-invariant implicit function theorem in infinite-dimensions, Proc. Royal Soc. Edinburgh, t. 92 A, 1982, p. 13-30. Zbl0512.58011MR667122
  17. [17] E.N. Dancer, An implicit function theorem with symmetries and its application to nonlinear eigenvalue problems, Bull. Austral. Math. Soc., t. 21, 1980, p. 81-91. Zbl0414.58012MR569089
  18. [18] E.N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns., t. 39, 1980, p. 404-437. Zbl0417.34042MR590000
  19. [19] E.N. Dancer, On non-radially symmetric bifurcation, J. London Math. Soc., t. 20, 1979, p. 287-292. Zbl0418.35015
  20. [20] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana Univ. Math. J., t. 23, 1974, p. 1069-1076. Zbl0276.47051MR348567
  21. [21] E.N. Dancer, Perturbation of zeros in the presence of symmetries, to appear in J. Austral. Math. Soc. Zbl0535.58013MR720004
  22. [22] E.N. Dancer, Remarks on S1-symmetries and a special degree for S1-invariant gradient mappings, submitted. 
  23. [23] E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Ang. Math., t. 350, 1984, p. 1-22. Zbl0525.58012MR743531
  24. [24] E. Fadell and R. Rabinowitz, Generalized cohomology theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., t. 45, 1978, p. 139-174. Zbl0403.57001MR478189
  25. [25] I. Gokhberg, P. Lancaster and L. Rodman, Perturbation of H-self-adjoint matrices with applications to differential equations, Integral equations and operator theory, t. 5, 1982, p. 718-757. Zbl0511.15010MR697011
  26. [26] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc., t. 174, 1976. Zbl0338.47032MR425696
  27. [27] T. Kato, Perturbation theory for linear operators, Berlin, Springer, 1966. Zbl0148.12601
  28. [28] N. Lloyd, Degree theory, Cambridge, Cambridge University Press, 1978. Zbl0367.47001MR493564
  29. [29] J. Logan, Invariant variational principles, New York, Academic Press, 1977. MR500376
  30. [30] R. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc., t. 32, 1976, p. 251-278. Zbl0316.47042MR402561
  31. [31] R. Narasimhan, Lectures on topics in analysis, Bombay, Tata Institute, 1965. Zbl0185.33601MR212837
  32. [32] R. Nussbaum, The fixed point index for locally condensing maps, Ann. Mat. Pura Appl., t. 89, 1971, p. 217-258. Zbl0226.47031MR312341
  33. [33] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., t. 7, 1971, p. 487-513. Zbl0212.16504MR301587
  34. [34] P.H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal., t. 25, 1977, p. 412-424. Zbl0369.47038MR463990
  35. [35] D. Sattinger, Group theoretic methods in bifurcation theory, Lecture notes in mathematics, no. 762, Berlin, Springer, 1979. Zbl0414.58013MR551626
  36. [36] C. Siegel and J. Moser, Lectures on celestial mechanics, Berlin, Springer-Verlag, 1971. Zbl0312.70017MR502448
  37. [37] M. Vainberg, Variational methods for the study of nonlinear equations, San Francisco, Holden-Day, 1964. 
  38. [38] G. Wasserman, Equivariant differential topology, Topology, t. 8, 1969, p. 127-150. Zbl0215.24702MR250324
  39. [39] P. Wolfe, Equilibrium states of an elastic conductor in a magnetic field: a paradigm of bifurcation theory, Trans. Amer. Math. Soc., t. 278, 1983, p. 377-388. Zbl0519.73093MR697082
  40. [40] P. Wolfe, Rotating states of an elastic conductor, preprint. Zbl0565.73093MR826837

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.