Vers une notion de dérivation fonctionnelle causale

Michel Fliess

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 1, page 67-76
  • ISSN: 0294-1449

How to cite

top

Fliess, Michel. "Vers une notion de dérivation fonctionnelle causale." Annales de l'I.H.P. Analyse non linéaire 3.1 (1986): 67-76. <http://eudml.org/doc/78108>.

@article{Fliess1986,
author = {Fliess, Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-commutative generating power series; shuffle algebras; iterated path- integrals},
language = {fre},
number = {1},
pages = {67-76},
publisher = {Gauthier-Villars},
title = {Vers une notion de dérivation fonctionnelle causale},
url = {http://eudml.org/doc/78108},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Fliess, Michel
TI - Vers une notion de dérivation fonctionnelle causale
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 1
SP - 67
EP - 76
LA - fre
KW - non-commutative generating power series; shuffle algebras; iterated path- integrals
UR - http://eudml.org/doc/78108
ER -

References

top
  1. [1] J.F. Barrett, The use of functionals in the analysis of non-linear physical systems, J. Electronics Control, t. 15, 1963, p. 567-615. 
  2. [2] J. Berstel et C. Reutenauer, Les séries rationnelles et leurs langages, Masson, Paris, 1984. Zbl0573.68037MR745968
  3. [3] N. Bourbaki, Algèbre I (chap. 1 à 3), Hermann, Paris, 1970. Zbl0211.02401MR274237
  4. [4] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math., t. 65, 1957, p. 163-178. Zbl0077.25301MR85251
  5. [5] K.-T. Chen, Algebraic paths, J. Algebra, t. 10, 1968, p. 8-36. Zbl0204.33803MR229630
  6. [6] K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., t. 83, 1977, p. 831-879. Zbl0389.58001MR454968
  7. [7] W.N. Findley, J.-S. Lai et K. Onaran, Creep and Relaxation of Nonlinear Visco-elastic Materials, North-Holland, Amsterdam, 1976. Zbl0345.73034MR431847
  8. [8] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, t. 109, 1981, p. 3-40. Zbl0476.93021MR613847
  9. [9] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et series génératrices non commutatives, Inventiones Math., t. 71, 1983, p. 521-537. Zbl0513.93014MR695904
  10. [10] M. Fliess, On the concept of derivatives and Taylor expansions for nonlinear input-output systems, Proc. 22nd IEEE Conf. Decision Control, p. 643-646, San Antonio, TX, 1983. 
  11. [11] M. Fliess, M. Lamnabhi et F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional expansions, IEEE Trans. Circuits Systems, t. 30, 1983, p. 554-570. Zbl0529.34002MR715510
  12. [12] M. Fliess et F. Lamnabhi-Lagarrigue, Application of a new functional expansion to the cubic anharmonic oscillator, J. Math. Physics, t. 23, 1982, p. 495-502. MR649526
  13. [13] M. Fliess et D. Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K. T. Chen, Séminaire de ProbabilitésXVI1980/1981, J. Azéma et M. Yor eds., p. 257-267, Lect. Notes Math.920, Springer-Verlag, Berlin, 1982. Zbl0495.60064MR658689
  14. [14] F. Hausdorff, Die symbolische Exponentialformel in derGruppentheorie, Leipziger Ber., t. 58, 1906, p. 19-48. Zbl37.0176.02JFM37.0176.02
  15. [15] W. Magnus, A. Karrass et D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966. 
  16. [16] U. Oberst, Actions of formal groups on formal schemes. Application to control theory and combinatorics, Séminaire M.-P. Malliavin, Paris, 1983. Zbl0617.14029
  17. [17] R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math., t. 68, 1958, p. 210-220. Zbl0083.25401MR100011
  18. [18] J. Riordan, An Introduction to CombinatorialAnalysis, Wiley, New York, 1958. Zbl0078.00805MR96594
  19. [19] G. Rosen, Formulations of Classical and Quantum Dynamical Theory, Academic Press, New York, 1969. Zbl0195.28102MR273906
  20. [20] G.-C. Rota, B. Sagan et P.R. Stein, A cyclic derivative in noncommutative algebra, J. Algebra, t. 64, 1980, p. 54-75. Zbl0428.16036MR575782
  21. [21] W.J. Rugh, Nonlinear System Theory, TheJohns Hopkins University Press, Baltimore, 1981. Zbl0666.93065MR713994
  22. [22] J. Rzewuski, Field Theory, t. 2, Polish Scientific Publishers, Varsovie, et, Iliffe Books, Londres, 1969. 
  23. [23] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, Wiley, New York, 1980. Zbl0501.93002MR562917
  24. [24] R. Siegmund-Schultze, Die Anfänge der Funktionalanalysis und ihr Platz im Umwälzungsprozess der Mathematik um1900, Arch. History Exact Sc., t. 26, 1982, p. 13-71. Zbl0514.46001MR664469
  25. [25] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1968. Zbl0194.32901MR252485
  26. [26] V. Volterra, Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913. 
  27. [27] V. Volterra et J. Pérès, Théorie générale des fonctionnelles, t. 1, Gauthier-Villars, Paris. 1936. Zbl0015.30501JFM62.0455.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.