Hopf bifurcation for fully nonlinear equations in Banach space

Giuseppe Da Prato; Alessandra Lunardi

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 4, page 315-329
  • ISSN: 0294-1449

How to cite

top

Da Prato, Giuseppe, and Lunardi, Alessandra. "Hopf bifurcation for fully nonlinear equations in Banach space." Annales de l'I.H.P. Analyse non linéaire 3.4 (1986): 315-329. <http://eudml.org/doc/78116>.

@article{DaPrato1986,
author = {Da Prato, Giuseppe, Lunardi, Alessandra},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear evolution equations; first order differential equation; Hopf bifurcation; spectral properties},
language = {eng},
number = {4},
pages = {315-329},
publisher = {Gauthier-Villars},
title = {Hopf bifurcation for fully nonlinear equations in Banach space},
url = {http://eudml.org/doc/78116},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Da Prato, Giuseppe
AU - Lunardi, Alessandra
TI - Hopf bifurcation for fully nonlinear equations in Banach space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 4
SP - 315
EP - 329
LA - eng
KW - nonlinear evolution equations; first order differential equation; Hopf bifurcation; spectral properties
UR - http://eudml.org/doc/78116
ER -

References

top
  1. [1] S.N. Chow, J.K. Hale, Methods of bifurcation theory, Springer-Verlag, Berlin, 1982. Zbl0487.47039MR660633
  2. [2] M.G. Crandall, P.H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rat. Mech. Anal., t. 68, 1978, p. 53-72. Zbl0385.34020MR467844
  3. [3] G. Da Prato, P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Maths. Pures Appl., t. 54, 1975, p. 305-387. Zbl0315.47009MR442749
  4. [4] J.K. Hale, J. Scheurle, Smoothness of bounded solutions of nonlinear evolution equations, J. Diff. Eq., t. 56, 1985, p. 142-163. Zbl0505.34029MR772123
  5. [5] D. Henry, Geometric theory of semilinear parabolic equations, Lectures Notes in Mathematics, n° 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
  6. [6] G. Iooss, Bifurcation of maps and applications, Elsevier, North-Holland, New York, 1979. Zbl0408.58019MR531030
  7. [7] J. Ize, Periodic solutions of nonlinear parabolic equations, Comm. Part. Diff. Eq., t. 4, 1979. p. 1299-1387. Zbl0436.35012MR551656
  8. [8] H. Kielhöfer, Hopf bifurcation at multiple eigenvalues, Arch. Rat. Mech. Anal., t. 69, 1979, p. 53-83. Zbl0398.34058MR513959
  9. [9] H. Kielhöfer, Generalized Hopf bifurcation in Hilbert space, Math. Meth. in the Appl. Sci., t. 1, 1979, p. 498-513. Zbl0451.34059MR548684
  10. [10] J.L. Lions, J. Peetre, Sur une classe d'espaces d'interpolation, Publ. I. H. E. S., Paris, t. 19, 1964, p. 5-68. Zbl0148.11403MR165343
  11. [11] J. Marsden, M.F. Mccracken, The Hopf bifurcation and its applications, Springer-Verlag, Berlin, 1976. Zbl0346.58007MR494309
  12. [12] P. Negrini, A. Tesei, Attractivity and Hopf bifurcation in Banach spaces. J. Math. An. Appl., t. 78, 1980, p. 204-221. Zbl0452.35050MR595777
  13. [13] D.H. Sattinger, Topics in stability and bifurcation theory, Springer-Verlag, Berlin, 1973. Zbl0248.35003MR463624
  14. [14] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. An. Appl., t. 107, 1985, p. 16-66. Zbl0589.47042MR786012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.