A priori interior gradient bounds for solutions to elliptic Weingarten equations
Annales de l'I.H.P. Analyse non linéaire (1987)
- Volume: 4, Issue: 5, page 405-421
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKorevaar, Nicholas J.. "A priori interior gradient bounds for solutions to elliptic Weingarten equations." Annales de l'I.H.P. Analyse non linéaire 4.5 (1987): 405-421. <http://eudml.org/doc/78138>.
@article{Korevaar1987,
author = {Korevaar, Nicholas J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {maximum principle; a priori interior gradient bounds; smooth solutions; Weingarten equation; interior barrier surface; prescribed mean curvature equation},
language = {eng},
number = {5},
pages = {405-421},
publisher = {Gauthier-Villars},
title = {A priori interior gradient bounds for solutions to elliptic Weingarten equations},
url = {http://eudml.org/doc/78138},
volume = {4},
year = {1987},
}
TY - JOUR
AU - Korevaar, Nicholas J.
TI - A priori interior gradient bounds for solutions to elliptic Weingarten equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 5
SP - 405
EP - 421
LA - eng
KW - maximum principle; a priori interior gradient bounds; smooth solutions; Weingarten equation; interior barrier surface; prescribed mean curvature equation
UR - http://eudml.org/doc/78138
ER -
References
top- [1] I. Bakelman and B. Kantor, Estimates for Solutions of Quasilinear Elliptic Equations Connected with Problems of Geometry in the Large, Mat. Sbornik, Vol. 91, (133), 1973, pp. 336-349=Math. U.S.S.R.-Sbornik, Vol. 20, 1973, pp. 348-363. Zbl0282.35043MR333441
- [2] I. Bakelman and I. Kantor, Existence of Spherically Homeomorphic Hypersurfaces in Euclidean Space with Prescribed Mean Curvature, Geometry and Topology, Vol. 1, 1974, pp. 3-10, Leningrad.
- [3] E. Bombieri, E. Di Giorgi and M. Miranda, Una maggiorazione a priori relative alle ipersupertici minimali nonparametriche, Arch. Rat. Mech. Anal, Vol. 32, 1969, pp. 255-269. Zbl0184.32803
- [4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Elliptic Equations. I. Monge-Ampère Equations, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402. Zbl0598.35047MR739925
- [5] L. Caffarelli, J.J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Equations. II. Complex Monge-Ampère, and uniformly Elliptic, Equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 209-252. Zbl0598.35048MR780073
- [6] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Elliptic Equations. III. Functions of eigenvalues of the Hessian, Acta. Math. (to appear). Zbl0654.35031MR806416
- [7] L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear Second Order Elliptic Equations. IV. Starshaped Compact Weingarten Hypersurfaces (to appear). Zbl0672.35027MR1112140
- [8] R. Finn, New Estimates for Equations of Minimal Surface Type, Arch. Rat. Mech. Anal., Vol. 14, 1963, pp. 337-375. Zbl0133.04601MR157096
- [9] L. Gårding, An Inequality for Hyperbolic Polynomials, J. Math. and Mechanics, Vol. 8, 1959, pp. 957-965. Zbl0090.01603MR113978
- [10] N.M. Ivočkina, The Integral Method of Barrier Functions and the Dirichlet Problem for Equations with Operators of Monge-Ampère Type, Math. U.S.S.R.-Sbornik, Vol. 40, 1981, pp. 179-192. Zbl0467.35020
- [11] N.J. Korevaar, An Easy Proof of the Interior Gradient Bound for Solutions to the Prescribed Mean Curvature Problem, Trans. A.M.S. (to appear). Zbl0599.35046
- [12] N.V. Krylov, Boundedly Nonhomogeneous Elliptic and Parabolic Equations in a Domain, Izvestia Math. Ser., Vol. 47, 1983, pp. 75-108. Zbl0578.35024MR688919
- [13] V.I. Oliker, Hypersurfaces in Rn+1 with Prescribed Gaussian Curvature and Related Equations of Monge-Ampère Type, Comm. Part. Diff. Eqtns., Vol. 9, 1984, pp. 807-838. Zbl0559.58031MR748368
- [14] A.V. Pogorelov, The Minkowski Multi-Dimensional Problem, Wiley, New York, 1978.
- [15] L. Simon, Interior Gradient Bounds for Non-Uniformly Elliptic Equations, Indiana U. Math. J., Vol. 25, (9), 1976, pp. 821-855. Zbl0346.35016MR412605
- [16] A.E. Treibergs and S.W. Wei, Embedded Hypersurfaces with Prescribed Mean Curvature, J. Diff. Geom., Vol. 18, 1983, pp. 513-521. Zbl0529.53043MR723815
- [17] N. Trudinger, A New Proof of the Interior Gradient Bound for the Minimal Surface Equation in n Dimensions, Proc. Nat. Acad. Sci. U.S.A., Vol. 69, 1972, pp. 166-175. Zbl0231.53007MR296832
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.