A priori interior gradient bounds for solutions to elliptic Weingarten equations

Nicholas J. Korevaar

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 5, page 405-421
  • ISSN: 0294-1449

How to cite

top

Korevaar, Nicholas J.. "A priori interior gradient bounds for solutions to elliptic Weingarten equations." Annales de l'I.H.P. Analyse non linéaire 4.5 (1987): 405-421. <http://eudml.org/doc/78138>.

@article{Korevaar1987,
author = {Korevaar, Nicholas J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {maximum principle; a priori interior gradient bounds; smooth solutions; Weingarten equation; interior barrier surface; prescribed mean curvature equation},
language = {eng},
number = {5},
pages = {405-421},
publisher = {Gauthier-Villars},
title = {A priori interior gradient bounds for solutions to elliptic Weingarten equations},
url = {http://eudml.org/doc/78138},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Korevaar, Nicholas J.
TI - A priori interior gradient bounds for solutions to elliptic Weingarten equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 5
SP - 405
EP - 421
LA - eng
KW - maximum principle; a priori interior gradient bounds; smooth solutions; Weingarten equation; interior barrier surface; prescribed mean curvature equation
UR - http://eudml.org/doc/78138
ER -

References

top
  1. [1] I. Bakelman and B. Kantor, Estimates for Solutions of Quasilinear Elliptic Equations Connected with Problems of Geometry in the Large, Mat. Sbornik, Vol. 91, (133), 1973, pp. 336-349=Math. U.S.S.R.-Sbornik, Vol. 20, 1973, pp. 348-363. Zbl0282.35043MR333441
  2. [2] I. Bakelman and I. Kantor, Existence of Spherically Homeomorphic Hypersurfaces in Euclidean Space with Prescribed Mean Curvature, Geometry and Topology, Vol. 1, 1974, pp. 3-10, Leningrad. 
  3. [3] E. Bombieri, E. Di Giorgi and M. Miranda, Una maggiorazione a priori relative alle ipersupertici minimali nonparametriche, Arch. Rat. Mech. Anal, Vol. 32, 1969, pp. 255-269. Zbl0184.32803
  4. [4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Elliptic Equations. I. Monge-Ampère Equations, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402. Zbl0598.35047MR739925
  5. [5] L. Caffarelli, J.J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Equations. II. Complex Monge-Ampère, and uniformly Elliptic, Equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 209-252. Zbl0598.35048MR780073
  6. [6] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second Order Elliptic Equations. III. Functions of eigenvalues of the Hessian, Acta. Math. (to appear). Zbl0654.35031MR806416
  7. [7] L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear Second Order Elliptic Equations. IV. Starshaped Compact Weingarten Hypersurfaces (to appear). Zbl0672.35027MR1112140
  8. [8] R. Finn, New Estimates for Equations of Minimal Surface Type, Arch. Rat. Mech. Anal., Vol. 14, 1963, pp. 337-375. Zbl0133.04601MR157096
  9. [9] L. Gårding, An Inequality for Hyperbolic Polynomials, J. Math. and Mechanics, Vol. 8, 1959, pp. 957-965. Zbl0090.01603MR113978
  10. [10] N.M. Ivočkina, The Integral Method of Barrier Functions and the Dirichlet Problem for Equations with Operators of Monge-Ampère Type, Math. U.S.S.R.-Sbornik, Vol. 40, 1981, pp. 179-192. Zbl0467.35020
  11. [11] N.J. Korevaar, An Easy Proof of the Interior Gradient Bound for Solutions to the Prescribed Mean Curvature Problem, Trans. A.M.S. (to appear). Zbl0599.35046
  12. [12] N.V. Krylov, Boundedly Nonhomogeneous Elliptic and Parabolic Equations in a Domain, Izvestia Math. Ser., Vol. 47, 1983, pp. 75-108. Zbl0578.35024MR688919
  13. [13] V.I. Oliker, Hypersurfaces in Rn+1 with Prescribed Gaussian Curvature and Related Equations of Monge-Ampère Type, Comm. Part. Diff. Eqtns., Vol. 9, 1984, pp. 807-838. Zbl0559.58031MR748368
  14. [14] A.V. Pogorelov, The Minkowski Multi-Dimensional Problem, Wiley, New York, 1978. 
  15. [15] L. Simon, Interior Gradient Bounds for Non-Uniformly Elliptic Equations, Indiana U. Math. J., Vol. 25, (9), 1976, pp. 821-855. Zbl0346.35016MR412605
  16. [16] A.E. Treibergs and S.W. Wei, Embedded Hypersurfaces with Prescribed Mean Curvature, J. Diff. Geom., Vol. 18, 1983, pp. 513-521. Zbl0529.53043MR723815
  17. [17] N. Trudinger, A New Proof of the Interior Gradient Bound for the Minimal Surface Equation in n Dimensions, Proc. Nat. Acad. Sci. U.S.A., Vol. 69, 1972, pp. 166-175. Zbl0231.53007MR296832

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.