On a free boundary problem for the stationary Navier-Stokes equations

Josef Bemelmans

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 6, page 517-547
  • ISSN: 0294-1449

How to cite

top

Bemelmans, Josef. "On a free boundary problem for the stationary Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 4.6 (1987): 517-547. <http://eudml.org/doc/78142>.

@article{Bemelmans1987,
author = {Bemelmans, Josef},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {stationary flows; free boundary; classical equilibrium figure; existence of a regular solution; implicit function theorem},
language = {eng},
number = {6},
pages = {517-547},
publisher = {Gauthier-Villars},
title = {On a free boundary problem for the stationary Navier-Stokes equations},
url = {http://eudml.org/doc/78142},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Bemelmans, Josef
TI - On a free boundary problem for the stationary Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 6
SP - 517
EP - 547
LA - eng
KW - stationary flows; free boundary; classical equilibrium figure; existence of a regular solution; implicit function theorem
UR - http://eudml.org/doc/78142
ER -

References

top
  1. [1] J. Bemelmans, Gleichgewichtsfiguren zäher Flüssigkeiten mit Oberflächenspannung, Analysis, Vol. 1, 1981, pp. 241-282. Zbl0561.76042MR727877
  2. [2] J. Bemelmans, Liquid Drops in a Viscous Fluid Under the Influence of Gravity and Surface Tension, Manuscripta math., Vol. 36, 1981, pp. 105-123. Zbl0478.76118MR637857
  3. [3] L. Hörmander, The Boundary Problems of Physical Geodesy, Arch. Rat. Mech. Anal., Vol. 62, 1976, pp. 1-62. Zbl0331.35020MR602181
  4. [4] T. Kato, Locally Coercive Nonlinear Equations, with Applications to Some Periodic Solutions, Duke Math. J., Vol. 51, 1984, pp. 923-936. Zbl0571.47051MR771388
  5. [5] L. Lichtenstein, Vorlesungen über einige Klassen nichtlinearer Integralgleichungen und Integro-Differentialgleichungen nebst Anwendungen, Berlin, 1931. Zbl0002.02802
  6. [6] L. Lichtenstein, Gleichgewichtsfiguren rotierender Flüssigkeiten, Berlin, 1933. Zbl0007.18104
  7. [7] L. Lichtenstein, Zur Theorie der Gleichgewichtsfiguren rotierender Flüssigkeiten, Math. Zeitsch., Vol. 39, 1935, pp. 639-648. Zbl0010.42303MR1545525
  8. [8] A.M. Ljapounov, Sur les figures d'équilibre peu différentes des ellipsoides d'une masse liquide homogène donnée d'un mouvement de rotation, première partie : étude générale du problème, Mem. Acad. Imp. Sci. St. Petersbourg, Vol. 9, 1906, pp. 1-225. JFM37.0718.13
  9. [9] T.A. Mccready, The Interior Neumann Problem for Stationary Solutions to the Navier-Stokes Equations, Dissertation, Stanford Univ., 1968. 
  10. [10] J. Moser, A Rapidly Convergent Iteration Method and Nonlinear Partial Differential Equations, I and II, Ann. Scuola Norm. Sup. Pisa, Vol. 20, 1966, pp. 265-315and 499-535. Zbl0144.18202MR206461
  11. [11] J. Nash, The Embedding Problem for Riemannian Manifolds, Ann. of Math., Vol. 63, 1956, pp. 20-63. Zbl0070.38603
  12. [12] J. Plemelj, Potentialtheoretische Untersuchungen, Leipzig, 1911. JFM42.0828.10
  13. [13] P.H. Rabinowitz, A Rapid Convergence Method for a Singular Perturbation Problem, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 1, 1984, pp. 1-17. Zbl0547.35047MR738493
  14. [14] V.A. Solonnikov, Solvability of a Problem on the Motion of a Viscous, Incompressible Fluid Bounded by a Free Surface, Math. U.S.S.R. Izvestija, Vol. 11, 1977, pp. 1323-1358. Zbl0398.76024
  15. [15] V.A. Solonnikov, and V.E. Ščadilov, On a Boundary Value Problem for a Stationary System of Navier-Stokes Equations, Proc. Steklov Inst. Math., Vol. 125, 1973, pp. 186-199. Zbl0313.35063MR364910
  16. [16] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970. Zbl0207.13501MR290095
  17. [17] H.F. Weinberger, On the Steady Fall of a Body in a Navier-Stokes Fluid, Proc. Symp. Pure Math., Vol. 23, 1973, pp. 421-439. Zbl0264.76025MR416234
  18. [18] E. Zehnder, Generalized Implicit Function Theorems with Applications to Some Small Division Problems, I, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 91-140. Zbl0309.58006MR380867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.