A rapidly convergent iteration method and non-linear differential equations = II

Jürgen Moser

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 3, page 499-535
  • ISSN: 0391-173X

How to cite

top

Moser, Jürgen. "A rapidly convergent iteration method and non-linear differential equations = II." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.3 (1966): 499-535. <http://eudml.org/doc/83390>.

@article{Moser1966,
author = {Moser, Jürgen},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {numerical analysis},
language = {eng},
number = {3},
pages = {499-535},
publisher = {Scuola normale superiore},
title = {A rapidly convergent iteration method and non-linear differential equations = II},
url = {http://eudml.org/doc/83390},
volume = {20},
year = {1966},
}

TY - JOUR
AU - Moser, Jürgen
TI - A rapidly convergent iteration method and non-linear differential equations = II
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 3
SP - 499
EP - 535
LA - eng
KW - numerical analysis
UR - http://eudml.org/doc/83390
ER -

References

top
  1. 1 J. Schauder, Das Anfangsvertproblem einer quasi-linearen hyperbolischen Differentialgleichung zweiter Order in beliebige), Anzahl von unabhängigen Veränderlichen. Fund. Math.24, 1935, pp. 213-246. Zbl0011.35202JFM61.0541.02
  2. 2 K.O. Friediuchs, Sytmmetric Hyperbolic Linear Differential Equations. Comm. Pure Appl. Math.7, 1954, pp. 345-392. Zbl0059.08902MR62932
  3. 3 I. Nash, The Imbedding of Riemannian Manifolds, Ann. Math.63, 1956, pp. 20-63. Zbl0070.38603
  4. 4 J. Schwartz, On Nash' s Implicit Function Theorem, Comm. Pure Appl. Math13, 1960, pp. 509-530. Zbl0178.51002MR114144
  5. 4' J. Moser, A. New Technique for the Construction of Solutions of Nonlinear Differential Equations. Proc. Nat. Acad. Sciences, Vol. 47, No. 11, pp. 1824-1831, 1961. Zbl0104.30503MR132859
  6. 4" J. Moser, On Invariant Curves of Area-Preserving Mappings of an Annulus. Nachr. Akad. Wiss. Göttingen Math. Phys. K1. IIa, No. 1, 1962, pp. 1-20. Zbl0107.29301MR147741
  7. 5 G.L. Siegel, Iteration of Analytic Functions. Ann. of Math.43, 1942, pp. 647-612. Zbl0061.14904MR7044
  8. 5' C.L. Siegel, Über die Normalform Analytischer Differentialgleichungen in der Nähe einer Gleich-gewichtslösung, Nachr. Akad. Wiss., Göttingen, Math. Phys.K1, IIa, 1952, pp. 21-30. Zbl0047.32901MR57407
  9. 6 A.N. Kolmogorov, Doklad. Akad., Nauk USSR98, 1954, pp. 527-530. Zbl0056.31502MR68687
  10. 7 A.N. Kolmogorov, General Theory of Dynamical Systeans and Classical Mechanics. Proc. of Intl. Congress of Math., Amsterdam, 1954, (Amsterdam: Erven P. Nordhoff, 1957), Vol. 1, pp. 315-333. Zbl0095.17103
  11. 8 V.I. Arnold, @@ Small divisors » I, On mappings of a circle onto itself, Isvest. Akad. Nauk, ser. mat., 25, No. 1, 1961, pp. 21-76. MR140699
  12. 9 V.I. Arnold, Small Divisor and Stability Problemis in Classicat and Celestial Mechanics. Uspekhi Mat. Nauk USSR, Vol. 18, Ser. 6 (119), 1963, pp. 81-192. MR170705
  13. 10 V.I. Arnold, Proof of A. N. Kolmogorov's Theorem on the Preservation of Quasi-Periodic Motions under Small Perturbation of the Hamiltonian, Uspekhi Mat. N. USSR, Vol. 18, Ser. 5 (113), 1963, pp. 13-40. Zbl0129.16606MR163025
  14. 11 K.O. Friedrighs, Symmetric Positive Linear Differential Equations, Comm. Pure Appl. Math.11, 1958, pp. 333-418. Zbl0083.31802MR100718
  15. 12 N.N. Bogolioubov, and Y.A. Mitropolski, The Method of Intergral Manifolds in Nonlinear Mechanics, Contrib. to Differential Equations, Vol. II, 1963, pp. 123-196. Zbl0137.28406
  16. 13 S.P. Diliberto, Perturbation Theorems for Periodic Surfaces I, Rend. del Cire. Mat. Palermo (2), 9, 1961, pp. 265-299. II, Rend. del Circ. Mat. Palermo (2), 10, 1962, pp. 111161. Zbl0109.31401MR142853
  17. 13' S.P. Diliberto, Perturbation Theory of Invariant Surfaces I-IV. Mimeographed ONR Reports, Berkeley, 1956/57. 
  18. 14 Kyner, W.T., Invariant manifolds, Rend. del Circolo MatematicoPalermo, Ser. II, Vol. 9, 1961, pp. 98-110. Zbl0104.06303MR149038
  19. 14' J.K. Hale, Integral Manifolds of Perturbed Differential Systems, Annals of Math., 78. 1961, pp. 496-531. Zbl0163.32804MR123786
  20. 15 I. Kupka, Stabilité des varietés invariantes d'un champ de vecteurs pour les petites perturbations. Compt. Rend. Acad. Sc. Paris, 258, Group 1, 1964, pp. 4197-4200. Zbl0117.05403MR162036
  21. 16 L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13 (1959), pp. 116-162. Zbl0088.07601MR109940
  22. 17 Gagliardo, E., Ulteriori proprieta di alcune classi di funzioni in più variabili, Ricerche Mat, 8, 1959, pp. 24-51. Zbl0199.44701MR109295
  23. 18 J.J. Kohn and L. Nirenberg, Non-coercive boundary value problems to appear in Comm. Pure Appl. Math. (See under « elliptic regularization »). Zbl0125.33302MR181815
  24. 19 W.T. Kyner, A fixed point theorem. Contributions to the Theory on Vonlinear Oscillations, Vol. 3, Princeton University Press, Annals of Math. Studies36, 1956, pp. 197-205. Zbl0073.33501MR81472
  25. 20 W.T. Kyner, Small Periodic Perturbations of an Autonomous System of Vector- Equations. Contributions to the Theory of Nonlinear Oscillations, Vol. 4, Princeton, 1958. Zbl0082.30103MR101946
  26. 21 R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, NYU Report, IMM-NYU 333, Oct. 1964, to be published in Comm. Pure Appl. Math. 
  27. 22 C.L. Siegel, Verlesungen über Himmelsmechanik, Springer, 1956. MR80009
  28. 23 H. Cremer, Über die Hänfigkeit der Niehtzentren, Math. Ann.115, pp. 607-612, 1942. Zbl0018.36802JFM64.0289.02
  29. 24, N. Levinson, Transformation of an analytic function of several zariables to a canonical form.Duke Math. Journal28, 1961, pp. 345-353. (See Theorem 2). Zbl0100.29002MR145101
  30. 25 N.I. Achieser, Vorlisungen iiber Approximationstheorie, Akd, Verlag. Berlin1953, translated from Russian, Chapter V. Zbl0052.29002MR61692

Citations in EuDML Documents

top
  1. Pierre Deligne, Les difféomorphismes du cercle
  2. Claude Roger, Étude des Γ -structures de codimension 1 sur la sphère S 2
  3. Kaising Tso, Nonlinear symmetric positive systems
  4. Pavol Brunovský, Generic properties of the rotation number of one-parameter diffeomorphisms of the circle
  5. Eduard Feireisl, Small time-periodic solutions to a nonlinear equation of a vibrating string
  6. Harold Rosenberg, Les difféomorphismes du cercle
  7. Arnaud Moncet, Sur la dynamique des difféomorphismes birationnels des surfaces algébriques réelles : ensemble de Fatou et lieu réel
  8. Josef Bemelmans, On a free boundary problem for the stationary Navier-Stokes equations
  9. J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne
  10. Eduard Feireisl, Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.