Lusternik-Schnirelman-theory for lagrangian intersections

H. Hofer

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 5, page 465-499
  • ISSN: 0294-1449

How to cite

top

Hofer, H.. "Lusternik-Schnirelman-theory for lagrangian intersections." Annales de l'I.H.P. Analyse non linéaire 5.5 (1988): 465-499. <http://eudml.org/doc/78161>.

@article{Hofer1988,
author = {Hofer, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symplectic geometry; Lagrangian intersection; holomorphic disks; holomorphic curves; Ljusternik-Schnirelman theory},
language = {eng},
number = {5},
pages = {465-499},
publisher = {Gauthier-Villars},
title = {Lusternik-Schnirelman-theory for lagrangian intersections},
url = {http://eudml.org/doc/78161},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Hofer, H.
TI - Lusternik-Schnirelman-theory for lagrangian intersections
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 5
SP - 465
EP - 499
LA - eng
KW - symplectic geometry; Lagrangian intersection; holomorphic disks; holomorphic curves; Ljusternik-Schnirelman theory
UR - http://eudml.org/doc/78161
ER -

References

top
  1. [1] R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin, CummingsReading, Mass., 1978. Zbl0393.70001MR515141
  2. [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions I, II, Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727 and Vol. 17, 1964, pp. 35- 92. Zbl0093.10401MR162050
  3. [3] V.I. Arnold, Sur une propriété topologique des applications canoniques de la mécanique classique, C.R. Acad. Sci. Paris, T. 261, 1965, pp. 3719-3722. Zbl0134.42305MR193645
  4. [4] N. Aronszajn, A Unique Continuation Theorem for Solutions of Elliptic Partial Differential Equations or Inequalities of the Second Order, J. Math. Pures Appl., (9), Vol. 36, 1957, pp. 235-249. Zbl0084.30402MR92067
  5. [5] D. Bennequin, Problèmes elliptiques, surfaces de Riemann et structures symplectiques, Séminaire Bourbaki, 38e année, 1985-1986, No 657. Zbl0644.53031MR880029
  6. [6] B. Boos and D.D. Bleeker, Topology and Analysis, Universitext, Springer, 1985. Zbl0551.58031MR771117
  7. [7] Y. Borisovich, V. Zvyagin and V. Sapronov, Nonlinear Fredholm maps and Leray Schauder Theory, Russian Math. Survey's, Vol. 32, No. 4, 1977, pp. 1-54. Zbl0383.58002
  8. [8] M. Chaperon, Quelques questions de géométrie symplectique, Séminaire Bourbaki 1982/1983, Asterisque, No. 105-106, pp. 231-249. Zbl0525.53049MR728991
  9. [9] D.C. Clark, A Variant of Lusternik-Schnirelman-Theory, Indiana University Math. J., Vol. 22, No. 1, 1972, pp. 65-74. Zbl0228.58006MR296777
  10. [10] C. Conley and E. Zehnder, The Birkhoff-Lewis Fixed Point Theorem and a Conjecture of V. I. Arnold, Inv. Math., T. 73, 1983, pp. 33-49. Zbl0516.58017MR707347
  11. [11] C. Conley and E. Zehnder, Morse Type Index Theory for Flows and Periodic Solutions for Hamiltonian Equations, Comm. Pure and Appl. Math., Vol. 27, 1984, pp. 211-253. Zbl0559.58019MR733717
  12. [12] A. Dold, Lectures on Algebraic Topology, Grundlehren der Math. Wissenschaften, Vol. 200, Springer, 2nd edition. Zbl0434.55001
  13. [13] H. Eliasson, Geometry of Manifold of Maps, J. Diff. Geometry, 1, 1967, pp. 165-194. Zbl0163.43901
  14. [14] D. Freed and V. Uhlenbeck, Instantons and Four-Manifolds, Springer, 1984. Zbl0559.57001MR757358
  15. [15] A. Floer, The Unregularized Gradient Flow of the Symplectic Action (preprint). Zbl0633.53058MR948771
  16. [16] A. Floer, A Morse Theory for Lagrangian Intersections (preprint). MR876964
  17. [17] A. Floer, A Relative Morse Index for the Symplectic Action (preprint). 
  18. [18] A. Floer, Proof of the Arnold Conjecture for Surfaces and Generalisations for Certain Kahler Manifolds, Duke Math. J., Vol. 51, 1986, pp. 1-32. Zbl0607.58016MR835793
  19. [19] A. Floer, H. Hofer and C. Viterbo, The Weinstein Conjecture in P x Cl (to appear). Zbl0666.58019
  20. [20] B. Fortune and A. Weinstein, A Symplectic Fixed Point Theorem for Complex Projective Spaces, Bull. A.M.S., Vol. 12, 1985. Zbl0566.58013MR766969
  21. [21] B. Fortune, A Symplectic Fixed Point Theorem for CPn, Inv. Math., Vol. 81 (Fax 1), 1985, pp. 29-46. Zbl0547.58015MR796189
  22. [22] M. Gromov, Pseudo-Holomorphic Curves in Symplectic Manifolds, Inv. Math., Vol. 82, 1985, pp. 307-347. Zbl0592.53025
  23. [23] M. Gromov and V.A. Rohlin, Imbeddings and Immersions in Riemannian Geometry, Russ. Math. Surveys, Vol. 25, 1970, p. 1-57. Zbl0222.53053MR290390
  24. [24] H. Hofer, Lagrangian Embeddings and Critical Point Theory, Ann. I.H.P., Analyse non linéaire, Vol. 2, 1985, pp. 407-462. Zbl0591.58009MR831040
  25. [25] H. Hofer and C. Viterbo, The Weinstein Conjecture in Cotangent Bundles and Related Results (to appear). Zbl0697.58044
  26. [26] H. Hofer and E. Zehnder, Periodic Solutions on Hypersurfaces and a Result by C. Viterbo, Inv. Math., Vol. 90, 1987, pp. 1-9. Zbl0631.58022MR906578
  27. [27] I. Ekeland and H. Hofer, Two Symplectic Fixed Point Theorems (submitted). 
  28. [28] L. Hormander, The Analysis of Linear Differential Operators III, Springer, 1985. Zbl0601.35001
  29. [29] T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. Zbl0342.47009MR407617
  30. [30] W. Klingenberg, Riemannian geometry, de Gruyter studies in Math., Vol. 1, Walter de Gruyter, 1982. Zbl0495.53036MR666697
  31. [31] W. Klingenberg, Lectures on Closed Geoderics, Springer, 1978. Zbl0397.58018MR478069
  32. [32] N. Kuiper, The Homotopy Type of the Unitary Groups of Hilbert Spaces, Topology, Vol. 3, 1965, pp. 19-30. Zbl0129.38901MR179792
  33. [33] F. Laudenbach and J.C. Sikorav, Persistance d'intersections avec la section nulle., Inv. Math., Vol. 82, 1985, pp. 349-357. Zbl0592.58023MR809719
  34. [34] D. Mcduff, Examples of Symplectic Structures, Inv. Math., Vol. 89, 1987, pp. 13-36. Zbl0625.53040MR892186
  35. [35] R. Palais, Morse Theory on Hilbert Manifolds, Topology, Vol. 2, 1963, pp. 299-340. Zbl0122.10702MR158410
  36. [36] R. Palais, Foundations of Global Non-Linear Analysis, Benjamin, 1968. Zbl0164.11102MR248880
  37. [37] B. Pansu, Notes sur les pages 316 à 323 de l'article de M. Gromov Pseudoholomorphic Curves in Symplectic Manifolds (preprint). 
  38. [38] J. Sacks and V. Uhlenbeck, The Existence of Minimal Immersions of Two Spheres, Ann. Math., Vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
  39. [39] J.C. Sikorav, Points fixes d'une application symplectique homologue à l'identité, J. Diff. Geom., Vol. 22, 1985, pp. 49-79. Zbl0555.58013MR826424
  40. [40] S. Smale, An Infinite-Dimensional Version of Sard's Theorem, Amer. J. Math., Vol. 87, 1965, pp. 861-866. Zbl0143.35301MR185604
  41. [41] I.N. Vekua, Generalized Analytic Functions, Pergamon, 1962. Zbl0100.07603
  42. [42] C. Viterbo, A Proof of the Weinstein Conjecture in R2 n, Ann. I.H.P., Analyse non linéaire, 1987 (à paraitre). Zbl0631.58013
  43. [43] W. Warschawski, On Differentiability at the Boundary in Conformal Mapping, Proc. A.M.S., Vol. 12, 1961, pp. 614-620. Zbl0100.28803MR131524
  44. [44] A. Weinstein, Lagrangian Submanifolds and Hamiltonian Systems, Ann. Math., Vol. 98, 1973, pp. 337-410. Zbl0271.58008MR331428
  45. [45] A. Weinstein, C0-Perturbation Theorems for Symplectic Fixed Points and Lagrangian Intersections, Séminaire sud-rhodanien de géométrie III, Travaux en cours, Hermann, Paris, 1984, pp. 140-144. Zbl0598.58013
  46. [46] A. Weinstein, Symplectic Geometry and the Calculus of Variations, Marston Morse Memorial Lectures, I.A.S., Princeton, 1985 (to appear). 
  47. [47] W.L. Wendland, Elliptic Systems in the Plane, Pitman, 1979. Zbl0396.35001MR518816
  48. [48] J.G. Wolfson, A. PDE Proof of Gromov's Compactness of Pseudo Holomorphic Curves, preprint, 1986. 
  49. [49] E. Zehnder, Some Perspectives in Hamiltonian Systems, preprint. Zbl0582.70017MR853759
  50. [50] A. Floer, Cuplength-Estimates on Lagrangian Intersections, preprint. Zbl0683.58017MR990135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.