Lagrangian embeddings and critical point theory

Helmut Hofer

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 6, page 407-462
  • ISSN: 0294-1449

How to cite

top

Hofer, Helmut. "Lagrangian embeddings and critical point theory." Annales de l'I.H.P. Analyse non linéaire 2.6 (1985): 407-462. <http://eudml.org/doc/78104>.

@article{Hofer1985,
author = {Hofer, Helmut},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {intersection points; Hamiltonian systems; strongly indefinite; functionals; Lagrangian embedding; Lyusternik-Shnirel'man category},
language = {eng},
number = {6},
pages = {407-462},
publisher = {Gauthier-Villars},
title = {Lagrangian embeddings and critical point theory},
url = {http://eudml.org/doc/78104},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Hofer, Helmut
TI - Lagrangian embeddings and critical point theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 6
SP - 407
EP - 462
LA - eng
KW - intersection points; Hamiltonian systems; strongly indefinite; functionals; Lagrangian embedding; Lyusternik-Shnirel'man category
UR - http://eudml.org/doc/78104
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] V.I. Arnold, Sur une propriété topologique des applications canoniques de la mécanique classique. C. R. Acad. Sc. Paris, t. 261, 1965, p. 3719-3722. Zbl0134.42305MR193645
  3. [3] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals. Inv. Math., t. 52, 1979, p. 241-273. Zbl0465.49006MR537061
  4. [4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries. Trans. A. M. S., t. 274, 1982, p. 533-572. Zbl0504.58014MR675067
  5. [5] M. Chaperon, Quelques questions de géométrie symplectique d'après, entre autres, Poincaré, Arnold, Conley and Zehnder, Séminaire Bourbaki 1982/1983, Asté- risque105-106, 1983, p. 231-249. Zbl0525.53049MR728991
  6. [6] M. Chaperon and E. Zehnder, Quelques résultats globaux en géométrie symplectique (to appear). MR753864
  7. [7] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold. Inv. Math., t. 73, 1983, p. 33-49. Zbl0516.58017MR707347
  8. [8] A. Dold, The fixed point transfer of fibre-preserving maps. Math. Z., t. 148, 1976, p. 215-244. Zbl0329.55007MR433440
  9. [9] H. Elliason, Geometry of manifolds of maps. J. Diff. Geom., t. 1, 1967, p. 165-194. Zbl0163.43901MR226681
  10. [10] E. Fadell and P. Rabinowitz, Generalised cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Inv. Math., t. 45, 1978, p. 139-174. Zbl0403.57001MR478189
  11. [11] A. Floer, Proof of the Arnold conjecture for surfaces and generalisations for certain Kähler manifolds (to appear). Zbl0607.58016MR835793
  12. [12] B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces (to appear). Zbl0566.58013MR766969
  13. [13] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
  14. [14] H. Hofer, A new proof for a result of Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface. Boll. U. M. I., t. 16, 1-B, 1982, p. 931-942. Zbl0541.70032MR683483
  15. [15] H. Hofer, On strongly indefinite functionals with applications. Trans. A. M. S., t. 275, 1, 1983, p. 185-214. Zbl0524.58010MR678344
  16. [16] W. Klingenberg, Lectures on closed geodesics. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, t. 230, 1978. Zbl0397.58018MR478069
  17. [17] W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Mathematics1, Walter de Gruyter, Berlin, New York, 1982. Zbl0495.53036MR666697
  18. [18] A. Weinstein, Lagrangian submanifolds and Hamiltonian systems. Ann. Math., t. 98, 1973, p. 377-410. Zbl0271.58008MR331428
  19. [19] A. Weinstein, C0-perturbation theorems for symplectic fixed points and Lagrangian intersections (to appear). Zbl0598.58013
  20. [20] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. Zbl0358.70014MR467823
  21. [21] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convex. Ann. IHP. Analyse non linéaire, t. 1, 1984, p. 19-78. Zbl0537.58018MR738494
  22. [22] D.C. Clark, A variant of Luisternik-Schnirelman theory, Indiana University Math. J., 22 No., t. 1, 1972, p. 65-74. Zbl0228.58006MR296777

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.