Lagrangian embeddings and critical point theory
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 6, page 407-462
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHofer, Helmut. "Lagrangian embeddings and critical point theory." Annales de l'I.H.P. Analyse non linéaire 2.6 (1985): 407-462. <http://eudml.org/doc/78104>.
@article{Hofer1985,
author = {Hofer, Helmut},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {intersection points; Hamiltonian systems; strongly indefinite; functionals; Lagrangian embedding; Lyusternik-Shnirel'man category},
language = {eng},
number = {6},
pages = {407-462},
publisher = {Gauthier-Villars},
title = {Lagrangian embeddings and critical point theory},
url = {http://eudml.org/doc/78104},
volume = {2},
year = {1985},
}
TY - JOUR
AU - Hofer, Helmut
TI - Lagrangian embeddings and critical point theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 6
SP - 407
EP - 462
LA - eng
KW - intersection points; Hamiltonian systems; strongly indefinite; functionals; Lagrangian embedding; Lyusternik-Shnirel'man category
UR - http://eudml.org/doc/78104
ER -
References
top- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] V.I. Arnold, Sur une propriété topologique des applications canoniques de la mécanique classique. C. R. Acad. Sc. Paris, t. 261, 1965, p. 3719-3722. Zbl0134.42305MR193645
- [3] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals. Inv. Math., t. 52, 1979, p. 241-273. Zbl0465.49006MR537061
- [4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries. Trans. A. M. S., t. 274, 1982, p. 533-572. Zbl0504.58014MR675067
- [5] M. Chaperon, Quelques questions de géométrie symplectique d'après, entre autres, Poincaré, Arnold, Conley and Zehnder, Séminaire Bourbaki 1982/1983, Asté- risque105-106, 1983, p. 231-249. Zbl0525.53049MR728991
- [6] M. Chaperon and E. Zehnder, Quelques résultats globaux en géométrie symplectique (to appear). MR753864
- [7] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold. Inv. Math., t. 73, 1983, p. 33-49. Zbl0516.58017MR707347
- [8] A. Dold, The fixed point transfer of fibre-preserving maps. Math. Z., t. 148, 1976, p. 215-244. Zbl0329.55007MR433440
- [9] H. Elliason, Geometry of manifolds of maps. J. Diff. Geom., t. 1, 1967, p. 165-194. Zbl0163.43901MR226681
- [10] E. Fadell and P. Rabinowitz, Generalised cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Inv. Math., t. 45, 1978, p. 139-174. Zbl0403.57001MR478189
- [11] A. Floer, Proof of the Arnold conjecture for surfaces and generalisations for certain Kähler manifolds (to appear). Zbl0607.58016MR835793
- [12] B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces (to appear). Zbl0566.58013MR766969
- [13] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
- [14] H. Hofer, A new proof for a result of Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface. Boll. U. M. I., t. 16, 1-B, 1982, p. 931-942. Zbl0541.70032MR683483
- [15] H. Hofer, On strongly indefinite functionals with applications. Trans. A. M. S., t. 275, 1, 1983, p. 185-214. Zbl0524.58010MR678344
- [16] W. Klingenberg, Lectures on closed geodesics. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, t. 230, 1978. Zbl0397.58018MR478069
- [17] W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Mathematics1, Walter de Gruyter, Berlin, New York, 1982. Zbl0495.53036MR666697
- [18] A. Weinstein, Lagrangian submanifolds and Hamiltonian systems. Ann. Math., t. 98, 1973, p. 377-410. Zbl0271.58008MR331428
- [19] A. Weinstein, C0-perturbation theorems for symplectic fixed points and Lagrangian intersections (to appear). Zbl0598.58013
- [20] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. Zbl0358.70014MR467823
- [21] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convex. Ann. IHP. Analyse non linéaire, t. 1, 1984, p. 19-78. Zbl0537.58018MR738494
- [22] D.C. Clark, A variant of Luisternik-Schnirelman theory, Indiana University Math. J., 22 No., t. 1, 1972, p. 65-74. Zbl0228.58006MR296777
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.