Existence of a closed geodesic on -convex sets

Annamaria Canino

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 6, page 501-518
  • ISSN: 0294-1449

How to cite

top

Canino, Annamaria. "Existence of a closed geodesic on $p$-convex sets." Annales de l'I.H.P. Analyse non linéaire 5.6 (1988): 501-518. <http://eudml.org/doc/78162>.

@article{Canino1988,
author = {Canino, Annamaria},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {closed geodesics; p-convex set},
language = {eng},
number = {6},
pages = {501-518},
publisher = {Gauthier-Villars},
title = {Existence of a closed geodesic on $p$-convex sets},
url = {http://eudml.org/doc/78162},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Canino, Annamaria
TI - Existence of a closed geodesic on $p$-convex sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 6
SP - 501
EP - 518
LA - eng
KW - closed geodesics; p-convex set
UR - http://eudml.org/doc/78162
ER -

References

top
  1. [1] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
  2. [2] A. Canino, On p-Convex Sets and Geodesics, J. Differential equations, Vol. 75, No. 1, 1988, pp. 118-157. Zbl0661.34042MR957011
  3. [3] G. Chobanov, A. Marino and D. Scolozzi, Evolution Equations for the Eigenvalue Problem for the Laplace Operator with Respect to an Obstacle, preprint No. 214, Dip. Mat. Pisa, 1987. Zbl0729.35088
  4. [4] G. Chobanov, A. Marino and D. Scolozzi, Molteplicità dei punti stazionari per una classe di funzioni semicontinue. Condizioni di "non tangenza" fra dominio della funzione e vincolo. Pendenza e regolarizzazione, preprint No. 167, Dip. Mat. Pisa, 1986. 
  5. [5] E. De Giorgi, M. Degiovanni, A. Marino and M. Tosques, Evolution Equations for a Class of Nonlinear Operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 75, 1983, pp. 1-8. Zbl0597.47045MR780801
  6. [6] E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 68, 1980, pp. 180-187. Zbl0465.47041MR636814
  7. [7] E. De Giorgi, A. Marino and M. Tosques, Funzioni (p, q)-convesse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 73, 1982, pp. 6-14. Zbl0521.49011MR726279
  8. [8] M. Degiovanni, Homotopical Properties of a Class of Nonsmooth Functions preprint No. 200, Dip. Mat. Pisa, 1987. MR1080210
  9. [9] M. Degiovanni, A. Marino and M. Tosques, General Properties of (p, q)-Convex Functions and (p, q)-Monotone Operators, Ricerche Mat., Vol. 32, 1983, pp. 285- 319. Zbl0555.49007MR766683
  10. [10] M. Degiovanni, A. Marino and M. Tosques, Evolution Equations with Lack of Convexity, Nonlinear Anal., Vol. 9, 1985, pp. 1401-1443. Zbl0545.46029MR820649
  11. [11] W. Klingenberg, The Theory of Closed geodesics in "Eigenvalues of Nonlinear Problems", C.I.M.E., III° ciclo, Varenna, 1974, Cremonese, Roma, 1974, pp. 85-137. MR458477
  12. [12] W. Klingenberg, Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978. Zbl0397.58018MR478069
  13. [13] A. Marino and D. Scolozzi, Geodetiche con ostacolo, Boll. Un. Mat. Ital., B(6), Vol. 2, 1983, pp. 1-31. MR698480
  14. [14] R.S. Palais, Homotopy Theory of Infinite Dimensional Manifolds, Topology, Vol. 5, 1966, pp. 1-16. Zbl0138.18302MR189028
  15. [15] D. Scolozzi, Un teorema di esistenza di una geodetica chiusa su varietà con bordo, Boll. Un. Mat. Ital., Vol. A (6), 4, 1985, pp. 451-457. 
  16. [16] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1978. Zbl0406.55001MR516508
  17. [17] F.E. Wolter, Interior Metric Shortest Paths and Loops in Riemannian Manifolds with not Necessarily Smooth Boundary, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.