Existence of a closed geodesic on p -convex sets

Annamaria Canino

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 6, page 501-518
  • ISSN: 0294-1449

How to cite

top

Canino, Annamaria. "Existence of a closed geodesic on $p$-convex sets." Annales de l'I.H.P. Analyse non linéaire 5.6 (1988): 501-518. <http://eudml.org/doc/78162>.

@article{Canino1988,
author = {Canino, Annamaria},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {closed geodesics; p-convex set},
language = {eng},
number = {6},
pages = {501-518},
publisher = {Gauthier-Villars},
title = {Existence of a closed geodesic on $p$-convex sets},
url = {http://eudml.org/doc/78162},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Canino, Annamaria
TI - Existence of a closed geodesic on $p$-convex sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 6
SP - 501
EP - 518
LA - eng
KW - closed geodesics; p-convex set
UR - http://eudml.org/doc/78162
ER -

References

top
  1. [1] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
  2. [2] A. Canino, On p-Convex Sets and Geodesics, J. Differential equations, Vol. 75, No. 1, 1988, pp. 118-157. Zbl0661.34042MR957011
  3. [3] G. Chobanov, A. Marino and D. Scolozzi, Evolution Equations for the Eigenvalue Problem for the Laplace Operator with Respect to an Obstacle, preprint No. 214, Dip. Mat. Pisa, 1987. Zbl0729.35088
  4. [4] G. Chobanov, A. Marino and D. Scolozzi, Molteplicità dei punti stazionari per una classe di funzioni semicontinue. Condizioni di "non tangenza" fra dominio della funzione e vincolo. Pendenza e regolarizzazione, preprint No. 167, Dip. Mat. Pisa, 1986. 
  5. [5] E. De Giorgi, M. Degiovanni, A. Marino and M. Tosques, Evolution Equations for a Class of Nonlinear Operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 75, 1983, pp. 1-8. Zbl0597.47045MR780801
  6. [6] E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 68, 1980, pp. 180-187. Zbl0465.47041MR636814
  7. [7] E. De Giorgi, A. Marino and M. Tosques, Funzioni (p, q)-convesse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 73, 1982, pp. 6-14. Zbl0521.49011MR726279
  8. [8] M. Degiovanni, Homotopical Properties of a Class of Nonsmooth Functions preprint No. 200, Dip. Mat. Pisa, 1987. MR1080210
  9. [9] M. Degiovanni, A. Marino and M. Tosques, General Properties of (p, q)-Convex Functions and (p, q)-Monotone Operators, Ricerche Mat., Vol. 32, 1983, pp. 285- 319. Zbl0555.49007MR766683
  10. [10] M. Degiovanni, A. Marino and M. Tosques, Evolution Equations with Lack of Convexity, Nonlinear Anal., Vol. 9, 1985, pp. 1401-1443. Zbl0545.46029MR820649
  11. [11] W. Klingenberg, The Theory of Closed geodesics in "Eigenvalues of Nonlinear Problems", C.I.M.E., III° ciclo, Varenna, 1974, Cremonese, Roma, 1974, pp. 85-137. MR458477
  12. [12] W. Klingenberg, Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978. Zbl0397.58018MR478069
  13. [13] A. Marino and D. Scolozzi, Geodetiche con ostacolo, Boll. Un. Mat. Ital., B(6), Vol. 2, 1983, pp. 1-31. MR698480
  14. [14] R.S. Palais, Homotopy Theory of Infinite Dimensional Manifolds, Topology, Vol. 5, 1966, pp. 1-16. Zbl0138.18302MR189028
  15. [15] D. Scolozzi, Un teorema di esistenza di una geodetica chiusa su varietà con bordo, Boll. Un. Mat. Ital., Vol. A (6), 4, 1985, pp. 451-457. 
  16. [16] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1978. Zbl0406.55001MR516508
  17. [17] F.E. Wolter, Interior Metric Shortest Paths and Loops in Riemannian Manifolds with not Necessarily Smooth Boundary, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.