Stable approximations of set-valued maps
Jean-Pierre Aubin; Roger J. Wets
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 6, page 519-535
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAubin, Jean-Pierre, and Wets, Roger J.. "Stable approximations of set-valued maps." Annales de l'I.H.P. Analyse non linéaire 5.6 (1988): 519-535. <http://eudml.org/doc/78163>.
@article{Aubin1988,
author = {Aubin, Jean-Pierre, Wets, Roger J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {graph convergence; nonlinear inlusions; stability; contingent derivative},
language = {eng},
number = {6},
pages = {519-535},
publisher = {Gauthier-Villars},
title = {Stable approximations of set-valued maps},
url = {http://eudml.org/doc/78163},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Aubin, Jean-Pierre
AU - Wets, Roger J.
TI - Stable approximations of set-valued maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 6
SP - 519
EP - 535
LA - eng
KW - graph convergence; nonlinear inlusions; stability; contingent derivative
UR - http://eudml.org/doc/78163
ER -
References
top- H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series Pitman, London, 1984. Zbl0561.49012MR773850
- J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley-Intersecience, 1972. Zbl0248.65063MR478662
- J.-P. Aubin, Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions, Advances in Mathematics, Supplementary studies, L. NACHBIN Ed., 1981, pp. 160-232. Zbl0484.47034MR634239
- J.-P. Aubin, Comportement lipschitzien des solutions de problèmes de minimisation convexes, C.R. Acad. Sci. Paris, T. 295, Series I, 1982, pp. 235-238. Zbl0503.49022MR681586
- J.-P. Aubin, Comportement lipschitzien des solutions de problèmes de minimisation convexes. In Non linear Parial Differential Equations and their Applications, Collège de France seminar IV, 81/82, 1983, pp. 1-18, Research Notes in Mathematics, Pitman, London. Zbl0523.49012MR716510
- J.-P. Aubin, Lipschitz Behavior of Solutions to Convex Minimization Problems, Mathematics of Operations Research, Vol. 8, 1984, pp. 87-111. Zbl0539.90085MR736641
- J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag; Grundlehren der Mathematische Wissenschaften, Vol. 264, 1984, pp. 1-342. Zbl0538.34007MR755330
- J.-P. Aubin and F.H. Clarke, Monotone Invariant Solutions to Differential Inclusions, J. London Mathematical Society, Vol. 16, 1977, pp. 357-366. Zbl0405.34049MR486742
- J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984. Zbl0641.47066MR749753
- J.-P. Aubin and H. Frankowska, On inverse Function Theorems for Set-Valued Maps, J. Mathématiques pures et appliquées T. 66, 1987, pp. 71-89. Zbl0643.46033MR884814
- F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983. Zbl0582.49001MR709590
- Sz. Dolecki, G. Salinetti and R. Wets, Convergence of Functions: Equi-Semicontinuity, Transactions of the American Mathematical Society, Vol. 276, pp. 409-429. Zbl0504.49006MR684518
- I. Ekeland, On the Variational Principle, J. Mathematical Analysis and Applications, Vol. 47, 1974, pp. 324-353. Zbl0286.49015MR346619
- H. Frankowska, 1974, Inclusions adjointes associées aux trajectoires minimales d'une inclusion différentielle, C.R. Acad. Sci. Paris, T. 206, Series I, 1983. Zbl0532.49024
- H. Frankowska, A Viability Approach to the Skorohod Problem, Stochastics, Vol. 14, 1985, pp. 227-244. Zbl0601.60059MR800245
- H. Frankowska, An Open Mapping Principle for Set-Valued Maps, Journal M. A. Appl., Vol. 127, 1987, pp. 172-180. Zbl0643.46034MR904219
- S. Robinson, Regularity and Stability for Convex Multivalued Functions, Mathematics of Operations Research, Vol. 1, 1976, pp. 130-143. Zbl0418.52005MR430181
- R.T. Rockafellar, Monotone Processes of Convex and Concave Type, Memoirs of American Mathematical Society, No. 77, 1967. Zbl0189.19602MR225231
- R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970. Zbl0193.18401MR274683
- R.T. Rockafellar, La théorie des sous-gradients, Presses de l'Université de Montréal, Montréal, 1979. MR531033
- G. Salinetti and R. Wets, On the Relation Between Two Types of Convergence for Convex Functions, J. Mathematical Analysis and Applications, Vol. 60, 1977, pp. 211-226. Zbl0359.54005MR479398
- C. Ursescu, Multifunctions with Closed Convex Graph, Czechoslovakia Mathematics J., Vol. 25, 1975, 438-441. Zbl0318.46006MR388032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.