Periodic bounce trajectories with a low number of bounce points

V. Benci; F. Giannoni

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 1, page 73-93
  • ISSN: 0294-1449

How to cite


Benci, V., and Giannoni, F.. "Periodic bounce trajectories with a low number of bounce points." Annales de l'I.H.P. Analyse non linéaire 6.1 (1989): 73-93. <>.

author = {Benci, V., Giannoni, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic bounce trajectory; Morse index; bounce points},
language = {eng},
number = {1},
pages = {73-93},
publisher = {Gauthier-Villars},
title = {Periodic bounce trajectories with a low number of bounce points},
url = {},
volume = {6},
year = {1989},

AU - Benci, V.
AU - Giannoni, F.
TI - Periodic bounce trajectories with a low number of bounce points
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 1
SP - 73
EP - 93
LA - eng
KW - periodic bounce trajectory; Morse index; bounce points
UR -
ER -


  1. [1] P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Point Theorems and Application to Some Nonlinear Problems with Strong Resonance at Infinity, Nonlin. Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. Zbl0522.58012MR713209
  2. [2] V. Benci, Normal Modes of a Lagrangian System Constrained in a Potential Well, Ann. Inst. H. Poincaré, Vol. 1, 1984, pp. 379-400. Zbl0561.58006MR779875
  3. [3] V. Benci ,A New Approach to the Morse-Conley Index Theory, Proceed. on "Recent Advances in Hamiltonian Systems", Dell'Antonio and D'Onofrio Ed., World Scientific Publ., 1987. Zbl0665.58007MR902622
  4. [4] V.. Benci, Some Applications of the Generalized Morse-Conley Index, Conf. Sem. Mat. Univ. Bari, Vol. 218, 1987, pp. 1-31. Zbl0656.58006MR898735
  5. [5] V. Benci, A New Approach to the Morse-Conley Index Theory and Some Applications, to appear on Ann. Mat. Pure Appl. Zbl0778.58011
  6. [6] W.. Bos, Kritische Schnen auf Riemannschen Elementarraumstücken, Math. Ann., Vol. 151, 1983, pp. 431-451. Zbl0113.15204MR159297
  7. [7] G. Buttazzo and D. Percivale, Sull'approssimazione del rimbalzo unidimensionale, Ric. Mat., Vol. 30, 1981, pp. 217-231. Zbl0508.73024MR682529
  8. [8] G. Buttazzo and D. Percivale, On the Approximation of the Elastic Bounce Problem on Riemanian Manifolds, Journ. Diff. Eq., 47, 1983, pp. 227-245. Zbl0498.58011MR688104
  9. [9] M. Carriero and E. Pascali, Il problema del rimbalzo unidimensionale e sue penalizzazioni non convesse, Rend. Mat., Vol. 13, 1980, pp. 541-553. Zbl0461.73049MR615514
  10. [10] M. Carriero, A. Leaci and E. Pascali, Convergenza per l'equazione degli integrali primi associati al problema del rimbalzo unidimensionale, Ann. Mat. Pura Appl., Vol. 133, 1983, pp. 227-256. Zbl0545.73014MR725027
  11. [11] M. Degiovanni, Multiplicity of Solutions for the Bounce Problem. Journ. Diff. Eq., Vol. 54, 1984, pp. 414-428. Zbl0505.34006MR760380
  12. [12] F. Giannoni, Periodic Bounce Solutions of Dynamical Conservative Systems and their Minimal Period, to appear on Nonlin. Anal. T.M.A. Zbl0702.34036MR1036212
  13. [13] H. Gluck and W. Ziller, Existence of Peridoic Motions of Conservative Systems, Seminar on Minimal Submanifolds, Bombieri Ed., Princeton University Press, 1983. Zbl0546.58040MR795229
  14. [14] R. Peirone, Bounce Trajectories in Plane Tubolar Domains (to appear). Zbl0741.58021MR1142435
  15. [15] D. Percivale, Uniqueness in Elastic Bounce Problem, Journ. Diff. Eq., Vol. 56, 1985, pp. 206-215. Zbl0521.73006MR774163
  16. [16] L. Penrose and R. Penrose, Puzzles for Christmas, The New Scientist, 1580-81 and 1597, 25 Dec. 1958. 
  17. [17] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Ser., Amer. Math. Soc., 65, 1986. Zbl0609.58002MR845785
  18. [18] J. Rauch, Illumination of Bounded Domains, Amer. Math. Month., 85, 1978, pp. 359- 361. Zbl0399.52006MR482537

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.