Normal modes of a lagrangian system constrained in a potential well
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 5, page 379-400
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBenci, V.. "Normal modes of a lagrangian system constrained in a potential well." Annales de l'I.H.P. Analyse non linéaire 1.5 (1984): 379-400. <http://eudml.org/doc/78082>.
@article{Benci1984,
author = {Benci, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lagrangian system; periodic solutions},
language = {eng},
number = {5},
pages = {379-400},
publisher = {Gauthier-Villars},
title = {Normal modes of a lagrangian system constrained in a potential well},
url = {http://eudml.org/doc/78082},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Benci, V.
TI - Normal modes of a lagrangian system constrained in a potential well
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 5
SP - 379
EP - 400
LA - eng
KW - Lagrangian system; periodic solutions
UR - http://eudml.org/doc/78082
ER -
References
top- [BBF] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. T. M. A., t. 7, 1983, p. 981-1012. Zbl0522.58012MR713209
- [B1] V. Benci, Periodic solutions of Lagrangian systems on a compact manifold, to appear on J. Differential Equations. Zbl0605.58034MR848265
- [B2] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré, t. 1, 1984, p. 401- 412. Zbl0588.35007MR779876
- [BCF] V. Benci, A. Capozzi, D. Fortunato, Periodic solutions of Hamiltonian systems of prescribed period, preprint, MRC Technical Summary Report # 2508, 1983.
- [BF] V. Benci, D. Fortunato, Un teorema di molteplicità per un'equazione ellittica non lineare su varietà simmetriche, Proceedings of the Symposium Metodi asintotici e topologici in problemi diff. non lineari, L'Aquila, 1981.
- [B.R.] V. Benci, P.H. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., t. 52, 1979, p. 336-352. Zbl0465.49006MR537061
- [C] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rendiconti dell'Accademia di Sc. e Lettere dell'Istituto Lombardo, t. 112, 1978, p. 332-336. Zbl0436.58006
- [G] E.W.C. Van Groesen, Applications of natural constraints in critical point theory to periodic solutions of natural hamiltonian systems, Preprint MRC Technical Summary Report # 2593, 1983.
- [R1] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems a survey, SIAM J. Math. Anal., t. 13, 1982. Zbl0521.58028MR653462
- [R2] P.H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems, J. of Diff. Eq., t. 50, 1983, p. 33-48. Zbl0528.58028MR717867
- [R3] P.H. Rabinowitz, The mountain pass theorem: theme and variations, Proceedings of First Latin-American Seminar on Differential Equations, de Figuereido Ed., Springer VerlagLecture Notes. Zbl0493.58007MR679149
- [R4] P.H. Rabinowitz, On large norm periodic solutions of some differential equations, in Ergodic Theory and Dynamical Systems, F. A. Katock, ed., Birkhäuser, 1982, p. 193-210. Zbl0504.58018MR670080
Citations in EuDML Documents
top- Marino Badiale, Un risultato di molteplicità di soluzioni per problemi ai limiti semilineari
- V. Benci, F. Giannoni, Periodic bounce trajectories with a low number of bounce points
- Marco Degiovanni, Fabio Giannoni, Dynamical systems with newtonian type potentials
- Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
- Marco Degiovanni, Fabio Giannoni, Antonio Marino, Dynamical systems with Newtonian type potentials
- V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural hamiltonian systems
- Antonio Ambrosetti, Vittorio Coti Zelati, Solutions with minimal period for hamiltonian systems in a potential well
- Vittorio Coti Zelati, Ivar Ekeland, Pierre-Louis Lions, Index estimates and critical points of functionals not satisfying Palais-Smale
- V. Benci, D. Fortunato, F. Giannoni, On the existence of geodesics in static Lorentz manifolds with singular boundary
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.