On the density of the range for some nonlinear operators
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: 6, Issue: 2, page 139-151
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLong, Yiming. "On the density of the range for some nonlinear operators." Annales de l'I.H.P. Analyse non linéaire 6.2 (1989): 139-151. <http://eudml.org/doc/78170>.
@article{Long1989,
author = {Long, Yiming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {density of the range; nonlinear operators; Banach spaces; periodic solutions; nonlinear Hamiltonian systems; nonlinear Schrödinger operators},
language = {eng},
number = {2},
pages = {139-151},
publisher = {Gauthier-Villars},
title = {On the density of the range for some nonlinear operators},
url = {http://eudml.org/doc/78170},
volume = {6},
year = {1989},
}
TY - JOUR
AU - Long, Yiming
TI - On the density of the range for some nonlinear operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 2
SP - 139
EP - 151
LA - eng
KW - density of the range; nonlinear operators; Banach spaces; periodic solutions; nonlinear Hamiltonian systems; nonlinear Schrödinger operators
UR - http://eudml.org/doc/78170
ER -
References
top- [1] A. Bahri, Topological Results on a Certain Class of Functionals and Applications, J. of Func. Anal., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
- [2] A. Bahri and H. Berestycki, Forced Vibrations of Superquadratic Hamiltonian Systems, Acta Math., Vol. 152, 1984, pp. 143-197. Zbl0592.70027MR741053
- [3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. Zbl0361.35003MR473443
- [4] H. Hofer, On the Range of a Wave Operator with Nonmonotone Nonlinearity, Math. Nach., Vol. 106, 1982, pp. 327-340. Zbl0505.35058MR675766
- [5] Y. Long, On the Density of the Range for Some Superquadratic Operators, Mathematics Research Center, Technical Summary Report No. 2859, University of Wisconsin-Madison, 1985.
- [6] Y. Long, Doctoral Thesis, University of Wisconsin-Madison, 1987.
- [7] Y. Long, Periodic Solutions of Perturbed Superquadratic Hamiltonian Systems, Center of Mathematical Science, Technical Summary Report, University of Wisconsin-Madison (to appear). Zbl0724.34052
- [8] P.H. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
- [9] P.H. Rabinowitz, Periodic Solutions of Large Norm of Hamiltonian Systems, J. of Diff. Equa., Vol. 50, 1983, pp. 33-48. Zbl0528.58028MR717867
- [10] J. Simon, Compact Sets in the Space Lp(0, T; B), Annali di Matematica Pura ed Applicata (to appear). Zbl0629.46031MR916688
- [11] K. Tanaka, Density of the Range of a Wave Operator with Nonmonotone Superlinear Nonlinearity, Proc. Japan Acad., Vol. 62 A, 1986, pp. 129-132. Zbl0653.35061MR846346
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.