On the density of the range for some nonlinear operators

Yiming Long

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 2, page 139-151
  • ISSN: 0294-1449

How to cite

top

Long, Yiming. "On the density of the range for some nonlinear operators." Annales de l'I.H.P. Analyse non linéaire 6.2 (1989): 139-151. <http://eudml.org/doc/78170>.

@article{Long1989,
author = {Long, Yiming},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {density of the range; nonlinear operators; Banach spaces; periodic solutions; nonlinear Hamiltonian systems; nonlinear Schrödinger operators},
language = {eng},
number = {2},
pages = {139-151},
publisher = {Gauthier-Villars},
title = {On the density of the range for some nonlinear operators},
url = {http://eudml.org/doc/78170},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Long, Yiming
TI - On the density of the range for some nonlinear operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 2
SP - 139
EP - 151
LA - eng
KW - density of the range; nonlinear operators; Banach spaces; periodic solutions; nonlinear Hamiltonian systems; nonlinear Schrödinger operators
UR - http://eudml.org/doc/78170
ER -

References

top
  1. [1] A. Bahri, Topological Results on a Certain Class of Functionals and Applications, J. of Func. Anal., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
  2. [2] A. Bahri and H. Berestycki, Forced Vibrations of Superquadratic Hamiltonian Systems, Acta Math., Vol. 152, 1984, pp. 143-197. Zbl0592.70027MR741053
  3. [3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977. Zbl0361.35003MR473443
  4. [4] H. Hofer, On the Range of a Wave Operator with Nonmonotone Nonlinearity, Math. Nach., Vol. 106, 1982, pp. 327-340. Zbl0505.35058MR675766
  5. [5] Y. Long, On the Density of the Range for Some Superquadratic Operators, Mathematics Research Center, Technical Summary Report No. 2859, University of Wisconsin-Madison, 1985. 
  6. [6] Y. Long, Doctoral Thesis, University of Wisconsin-Madison, 1987. 
  7. [7] Y. Long, Periodic Solutions of Perturbed Superquadratic Hamiltonian Systems, Center of Mathematical Science, Technical Summary Report, University of Wisconsin-Madison (to appear). Zbl0724.34052
  8. [8] P.H. Rabinowitz, Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 1978, pp. 157-184. Zbl0358.70014MR467823
  9. [9] P.H. Rabinowitz, Periodic Solutions of Large Norm of Hamiltonian Systems, J. of Diff. Equa., Vol. 50, 1983, pp. 33-48. Zbl0528.58028MR717867
  10. [10] J. Simon, Compact Sets in the Space Lp(0, T; B), Annali di Matematica Pura ed Applicata (to appear). Zbl0629.46031MR916688
  11. [11] K. Tanaka, Density of the Range of a Wave Operator with Nonmonotone Superlinear Nonlinearity, Proc. Japan Acad., Vol. 62 A, 1986, pp. 129-132. Zbl0653.35061MR846346

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.