A PDE approach to certain large deviation problems for systems of parabolic equations
L. C. Evans; P. E. Souganidis; G. Fournier; M. Willem
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 229-258
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- 1. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- 2. M.G. Crandall, L.C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. AMS82 (1984), 487-502. Zbl0543.35011MR732102
- 3. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. AMS277 (1983), 1-42. Zbl0599.35024MR690039
- 4. M.D. Donsker and S.R.S. Varadhan, On a variational formula for the principal eigenvalue for operators with a maximum principle, Proc. Nat. Acad. Sci. USA72 (1975), 780-783. Zbl0353.49039MR361998
- 5. R. Ellis, Entropy, Large Deviations and Statistical Mechanisms, Springer, New York, 1985. Zbl0566.60097MR793553
- 6. L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equation with small noise intensities, Ann. L'Institut H. Poincaré2 (1985), 1-20. Zbl0601.60076MR781589
- 7. L.C. Evans and P.E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi equations, Indiana U. Math. J.33 (1984), 773-797. Zbl1169.91317MR756158
- 8. L.C. Evans and P.E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, to appear. Zbl0692.35014MR982575
- 9. W. Fleming and P.E. Souganidis, A PDE approach to asymptotic estimates for optional exit probabilities, Annali Scuola Norm. Sup. Pisa. Zbl0576.93067
- 10. M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984. Zbl0522.60055MR722136
- 11. F.R. Gantmacher, The Theory of Matrices (Vol. II), Chelsea, New York, 1959. Zbl0085.01001
- 12. S. Karlin and H.M. Taylor, A First Course in Stochastic Processes (2nd ed.), Academic Press, New York, 1975. Zbl0315.60016MR356197
- 13. S. Koike, An asymptotic formula for solutions of Hamilton-Jacobi-Bellman equations, preprint. Zbl0623.49016MR881728
- 14. P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Diff. Eq.56 (1985), 345-390. Zbl0506.35020MR780496