An intrinsic characterization of foldings of euclidean space
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 365-383
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLawrence, J., and Spingarn, J. E.. "An intrinsic characterization of foldings of euclidean space." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 365-383. <http://eudml.org/doc/78203>.
@article{Lawrence1989,
author = {Lawrence, J., Spingarn, J. E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {polyhedral complex; angle-sum relations; isometry},
language = {eng},
pages = {365-383},
publisher = {Gauthier-Villars},
title = {An intrinsic characterization of foldings of euclidean space},
url = {http://eudml.org/doc/78203},
volume = {S6},
year = {1989},
}
TY - JOUR
AU - Lawrence, J.
AU - Spingarn, J. E.
TI - An intrinsic characterization of foldings of euclidean space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 365
EP - 383
LA - eng
KW - polyhedral complex; angle-sum relations; isometry
UR - http://eudml.org/doc/78203
ER -
References
top- 1. Freudenthal, H. and W. Hurewicz, Dehnungen, Verkürzungen, Isometrien, Fundamenta Mathematicae26 (1936) 121-123. Zbl0013.28302
- 2. Grünbaum, B., Convex Polytopes. John Wiley & Sons, 1967. Zbl0163.16603
- 3. Hilton, P.J. and S. Wylie, Homology Theory. Cambridge U. Press, 1965. Zbl0163.17803
- 4. Hocking, J. and G. Young, Topology. Addison-Wesley, 1961. Zbl0135.22701
- 5. Lawrence, J., and J. Spingarn, On fixed points of nonexpansive piecewise isometric mappings, to appear in Proc. London Math. Soc.. Zbl0605.47052MR907234
- 6. Lawrence, J., and J. Spingarn, On iterates of nonexpansive mappings and foldings, forthcoming.
- 7. Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization14 (1976) 877-898. Zbl0358.90053MR410483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.