A variational convergence that yields chattering systems
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: S6, page 49-71
- ISSN: 0294-1449
Access Full Article
topHow to cite
topArtstein, S.. "A variational convergence that yields chattering systems." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 49-71. <http://eudml.org/doc/78208>.
@article{Artstein1989,
author = {Artstein, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Chattering variational problems; variational convergence; highly oscillatory coefficients},
language = {eng},
pages = {49-71},
publisher = {Gauthier-Villars},
title = {A variational convergence that yields chattering systems},
url = {http://eudml.org/doc/78208},
volume = {S6},
year = {1989},
}
TY - JOUR
AU - Artstein, S.
TI - A variational convergence that yields chattering systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 49
EP - 71
LA - eng
KW - Chattering variational problems; variational convergence; highly oscillatory coefficients
UR - http://eudml.org/doc/78208
ER -
References
top- [1] Z. Artstein, Topological dynamics of an ordinary differential equation. J. Differential Equations23, 1977, 216-223. Zbl0353.34043MR432984
- [2] Z. Artstein, Distributions of random sets and random selections. Israel J. Math.46, 1983, 313-324. Zbl0545.60018MR730347
- [3] M. Athans and P.L. Falb, Optimal Control. McGraw Hill, New York, 1966. Zbl0196.46303MR204181
- [4] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Applicable Mathematics Series, Boston, 1984. Zbl0561.49012MR773850
- [5] P. Billingsley, Convergence of Probability Measures. John Wiley, New York, 1968. Zbl0172.21201MR233396
- [6] G. Buttazzo, Some relaxation problems in optimal control theory. J. Math. Anal. Appl.125, 1987, 272-287. Zbl0633.49007MR891367
- [7] G. Buttazzo, Relaxation and Γ-limits in optimal control theory. Lecture in the Congrés Franco-Quebecois D'Analyse Non Linéaire Appliquée, Perpignan, Juin 1987.
- [8] G. Buttazzo and G. Dal Maso, r-convergence and optimal control problems. J. Optimiz. Theory Appl.38, 1982, 385-407. Zbl0471.49012MR686213
- [9] J.I. Gikhman, On a theorem of N.N. Bogolyubov. Ukranain Math. J.4 (2), 1952, 215-218.
- [10] J. Kurzweil, Generalized ordinary differential equations. Czech. Math. J.8, 1958, 360-388. Zbl0094.05804MR111878
- [11] G. Scorza Dragoni, Una theorema sulla funzioni continue rispetto ad una i misurable rispetto at ultra variable. Rend. Sem. Mat. Univ. Padova17, 1948, 102-106. Zbl0032.19702MR28385
- [12] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York1972. Zbl0253.49001
- [13] L.C. Young, Calculus of Variations and Optimal Control Theory. W.B. Saunders, Philadelphia1969. Zbl0177.37801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.