A variational convergence that yields chattering systems

S. Artstein

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 49-71
  • ISSN: 0294-1449

How to cite

top

Artstein, S.. "A variational convergence that yields chattering systems." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 49-71. <http://eudml.org/doc/78208>.

@article{Artstein1989,
author = {Artstein, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Chattering variational problems; variational convergence; highly oscillatory coefficients},
language = {eng},
pages = {49-71},
publisher = {Gauthier-Villars},
title = {A variational convergence that yields chattering systems},
url = {http://eudml.org/doc/78208},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Artstein, S.
TI - A variational convergence that yields chattering systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 49
EP - 71
LA - eng
KW - Chattering variational problems; variational convergence; highly oscillatory coefficients
UR - http://eudml.org/doc/78208
ER -

References

top
  1. [1] Z. Artstein, Topological dynamics of an ordinary differential equation. J. Differential Equations23, 1977, 216-223. Zbl0353.34043MR432984
  2. [2] Z. Artstein, Distributions of random sets and random selections. Israel J. Math.46, 1983, 313-324. Zbl0545.60018MR730347
  3. [3] M. Athans and P.L. Falb, Optimal Control. McGraw Hill, New York, 1966. Zbl0196.46303MR204181
  4. [4] H. Attouch, Variational Convergence for Functions and Operators. Pitman, Applicable Mathematics Series, Boston, 1984. Zbl0561.49012MR773850
  5. [5] P. Billingsley, Convergence of Probability Measures. John Wiley, New York, 1968. Zbl0172.21201MR233396
  6. [6] G. Buttazzo, Some relaxation problems in optimal control theory. J. Math. Anal. Appl.125, 1987, 272-287. Zbl0633.49007MR891367
  7. [7] G. Buttazzo, Relaxation and Γ-limits in optimal control theory. Lecture in the Congrés Franco-Quebecois D'Analyse Non Linéaire Appliquée, Perpignan, Juin 1987. 
  8. [8] G. Buttazzo and G. Dal Maso, r-convergence and optimal control problems. J. Optimiz. Theory Appl.38, 1982, 385-407. Zbl0471.49012MR686213
  9. [9] J.I. Gikhman, On a theorem of N.N. Bogolyubov. Ukranain Math. J.4 (2), 1952, 215-218. 
  10. [10] J. Kurzweil, Generalized ordinary differential equations. Czech. Math. J.8, 1958, 360-388. Zbl0094.05804MR111878
  11. [11] G. Scorza Dragoni, Una theorema sulla funzioni continue rispetto ad una i misurable rispetto at ultra variable. Rend. Sem. Mat. Univ. Padova17, 1948, 102-106. Zbl0032.19702MR28385
  12. [12] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York1972. Zbl0253.49001
  13. [13] L.C. Young, Calculus of Variations and Optimal Control Theory. W.B. Saunders, Philadelphia1969. Zbl0177.37801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.