A generalization of a theorem of H. Brezis & F. E. Browder and applications to some unilateral problems

L. Boccardo; D. Giachetti; F. Murat

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 367-384
  • ISSN: 0294-1449

How to cite

top

Boccardo, L., Giachetti, D., and Murat, F.. "A generalization of a theorem of H. Brezis & F. E. Browder and applications to some unilateral problems." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 367-384. <http://eudml.org/doc/78229>.

@article{Boccardo1990,
author = {Boccardo, L., Giachetti, D., Murat, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear and quasilinear variational inequalities; unilateral problems},
language = {eng},
number = {4},
pages = {367-384},
publisher = {Gauthier-Villars},
title = {A generalization of a theorem of H. Brezis & F. E. Browder and applications to some unilateral problems},
url = {http://eudml.org/doc/78229},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Boccardo, L.
AU - Giachetti, D.
AU - Murat, F.
TI - A generalization of a theorem of H. Brezis & F. E. Browder and applications to some unilateral problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 367
EP - 384
LA - eng
KW - nonlinear and quasilinear variational inequalities; unilateral problems
UR - http://eudml.org/doc/78229
ER -

References

top
  1. [1] A. Bensoussan, L. Boccardo, and F. Murat, On a nonlinear partial differential equation having natural growth and unbounded solutions. Ann. Inst. H. Poincaré, Anal. non linéaire, t. 5, 1988, p. 347-364. Zbl0696.35042MR963104
  2. [2] L. Boccardo, and D. Giachetti, Strongly nonlinear unilateral problems. Appl. Mat. Opt., t. 9, 1983, p. 291-301. Zbl0535.49010MR687723
  3. [3] L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugaliae Math., t. 41, 1982, p. 507-534. Zbl0524.35041MR766873
  4. [4] H. Brezis, Équations et inéquations dans les espaces vectoriels en dualité. Ann. Inst. Fourier Grenoble, t. 18, 1968, p. 115-175. Zbl0169.18602MR270222
  5. [5] H. Brezis and F.E. Browder, A property of Sobolev spaces. Comm. in P. D. E., t. 4, 1979, p. 1077-1083. Zbl0423.46023MR542513
  6. [6] H. Brezis and F.E. Browder, Some properties of higher order Sobolev spaces. J. Math. Pures Appl., t. 61, 1982, p. 245-259. Zbl0512.46034MR690395
  7. [7] L.I. Hedberg, Two approximation problems in function spaces. Ark. Math., t. 16, 1978, p. 51-81. Zbl0399.46023MR499137
  8. [8] L.I. Hedberg, Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem. Acta Math., t. 147, 1981, p. 237-264. Zbl0504.35018MR639040
  9. [9] L.I. Hedberg and T.H. Wolff, Thin sets in nonlinear potential theory. Ann. Inst. Fourier Grenoble, t. 33, 1983, p. 161-187. Zbl0508.31008MR727526
  10. [10] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969. Zbl0189.40603MR259693
  11. [11] N. G. MEYERS, An Lp -estimate for the gradient of solutions of second order elliptic divergence equations.Ann. Sc. Norm. Sup. Pisa, t. 17, 1963, p. 189-206. Zbl0127.31904MR159110
  12. [12] F. MURAT, L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q &lt;&lt; 2.J. Math. Pures Appl., t. 60, 1981, p. 309-322. Zbl0471.46020MR633007
  13. [13] J. R. L. WEBB, Boundary value problems for strongly nonlinear elliptic equations.J. London Math. Soc., t. 21, 1980, p. 123-132. Zbl0438.35029MR576188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.