Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity

H. F. Weinberger

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 5, page 407-425
  • ISSN: 0294-1449

How to cite

top

Weinberger, H. F.. "Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 407-425. <http://eudml.org/doc/78231>.

@article{Weinberger1990,
author = {Weinberger, H. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularized conservation law},
language = {eng},
number = {5},
pages = {407-425},
publisher = {Gauthier-Villars},
title = {Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity},
url = {http://eudml.org/doc/78231},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Weinberger, H. F.
TI - Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 407
EP - 425
LA - eng
KW - regularized conservation law
UR - http://eudml.org/doc/78231
ER -

References

top
  1. [1] H. Bateman, Some recent researches on the motion of fluids, Mon. Weather Rev., 43, 1915, pp. 163-170. 
  2. [2] P. Bauman and D. Phillips, Large-time behavior of solutions to certain quasilinear parabolic equations in several space dimensions, Am. Math. Soc., Proc., Vol. 96, 1986, pp. 237-240. Zbl0611.35059MR818451
  3. [3] P. Bauman and D. Phillips, Large-time behavior of solutions to a scalar conservation law in several space dimensions, Am. Math. Soc. Trans., Vol. 298, 1986, pp. 401-419. Zbl0602.35074MR857450
  4. [4] S.E. Buckley and M.C. Leverett, Mechanism of fluid displacement in sands, A.I.M.E., Vol. 146, 1942, pp. 107-116. 
  5. [5] J.M. Burgers, Application of a model system to illustrate some points of the statistical theory of free turbulence, Proc. Acad. Sci. Amsterdam, Vol. 43, 1940, pp. 2-12. Zbl0061.45710MR1147
  6. [6] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., Ed. R.v. Mises and T.v. Karman, Vol. 1, 1948, pp. 171-199. MR27195
  7. [7] J.D. Cole, On a quasi-linear prabolic equation occurring in aerodynamics, Quarterly Appl. Math., Vol. 9, 1951, pp. 225-236. Zbl0043.09902MR42889
  8. [8] A. Harten, J.M. Hyman, and P.D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math., Vol. 29, 1976, pp. 292-322. Zbl0351.76070MR413526
  9. [9] E. Hopf, The partial differential equation ut + uux = μ uxx, Comm. Pure Appl. Math., Vol. 3, 1950, pp. 201-230. Zbl0039.10403MR47234
  10. [10] A.M. Il'Inand O.A. Oleinik,Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R., Vol. 120, 1958, pp. 25-28; Am. Math. Soc. Trans., Vol. 42, 1964, pp. 19-23. Zbl0082.08901MR101396
  11. [11] A.M. Il'Inand O.A. Oleinik,Asymptotic behavior of solutions of the Cauchy probem for some quasilinear equations for large values of time, Mat. Sbornik, Vol. 51 #2 (93), 1960, pp. 191-216. Zbl0096.06601MR120469
  12. [12] A.S. Kalashnikov, Construction of generalized solutions of quasilinear equations of first order without convexity conditions as limits of solutions of parabolic equations with small parameter, Dokl. Akad. Nauk S.S.S.R., Vol. 127, 1959, pp. 27-30. Zbl0100.09203MR108651
  13. [13] P.D. Lax, The initial value problem for nonlinear hyperbolic equations in two independent variables, Ann. Math. Studies33, Princeton U. Press1954, pp. 211-229. Zbl0057.32502MR68093
  14. [14] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., Vol. 10, 1957, pp. 537-566. Zbl0081.08803MR93653
  15. [15] T.-P. Liu, Invariants and asymptotic behavior of solutions of a conservation law, Am. Math. Soc. Proceedings, Vol. 71, 1978, pp. 227-231. Zbl0392.35041MR500495
  16. [16] O.A. Oleinik,On Cauchy's problem for nonlinear equations in a class of discontinuous functions, Dokl. Akad. Nauk S.S.S.R., Vol. 95, 1954, pp. 451-455. Zbl0058.32101MR64258
  17. [17] O.A. Oleinik, Discontinuous solutions of differential equations, Uspekhi Mat. Nauk, 12 #3 (75), 1957, pp. 3-73. Zbl0080.07701MR94541
  18. [18] O.A. Oleinik, Construction of a generalized solution of the Cauchy problem for a quasilinear equation of first order by the introduction of "vanishing viscosity", Uspekhi Mat. Nauk, Vol. 14 #2 (86), 1959, pp. 159-164; Am. Math. Soc. Trans., Vol. 33, 1963, pp. 277-283. Zbl0131.09101MR117426
  19. [19] O.A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Uspekhi Mat. Nauk, Vol. 14 #2 (86), 1959, pp. 165-170; Am. Math. Soc. Trans., (2), 33, 1963, pp. 285-290. Zbl0132.33303MR117408
  20. [20] O.A. Oleinik and T.D. Ventsel', The first boundary value problem and the Cauchy problem for quasilinear equations of parabolic type, Matem. Sbornik, Vol. 41, 1957, pp. 105-128. Zbl0078.27605MR86247
  21. [21] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977. 
  22. [22] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential EquationsPrentice-Hall, Englewood Cliffs, N. J.1967, Springer, New York, 1986. Zbl0153.13602MR219861
  23. [23] B. Keyfitz Quinn, Solutions with shocks: An example of an L1-contractive semi-group, Comm. Pure Appl. Math., Vol. 24, 1971, pp. 125-132. Zbl0206.10401MR271545

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.