Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 5, page 407-425
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWeinberger, H. F.. "Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 407-425. <http://eudml.org/doc/78231>.
@article{Weinberger1990,
author = {Weinberger, H. F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularized conservation law},
language = {eng},
number = {5},
pages = {407-425},
publisher = {Gauthier-Villars},
title = {Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity},
url = {http://eudml.org/doc/78231},
volume = {7},
year = {1990},
}
TY - JOUR
AU - Weinberger, H. F.
TI - Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 407
EP - 425
LA - eng
KW - regularized conservation law
UR - http://eudml.org/doc/78231
ER -
References
top- [1] H. Bateman, Some recent researches on the motion of fluids, Mon. Weather Rev., 43, 1915, pp. 163-170.
- [2] P. Bauman and D. Phillips, Large-time behavior of solutions to certain quasilinear parabolic equations in several space dimensions, Am. Math. Soc., Proc., Vol. 96, 1986, pp. 237-240. Zbl0611.35059MR818451
- [3] P. Bauman and D. Phillips, Large-time behavior of solutions to a scalar conservation law in several space dimensions, Am. Math. Soc. Trans., Vol. 298, 1986, pp. 401-419. Zbl0602.35074MR857450
- [4] S.E. Buckley and M.C. Leverett, Mechanism of fluid displacement in sands, A.I.M.E., Vol. 146, 1942, pp. 107-116.
- [5] J.M. Burgers, Application of a model system to illustrate some points of the statistical theory of free turbulence, Proc. Acad. Sci. Amsterdam, Vol. 43, 1940, pp. 2-12. Zbl0061.45710MR1147
- [6] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., Ed. R.v. Mises and T.v. Karman, Vol. 1, 1948, pp. 171-199. MR27195
- [7] J.D. Cole, On a quasi-linear prabolic equation occurring in aerodynamics, Quarterly Appl. Math., Vol. 9, 1951, pp. 225-236. Zbl0043.09902MR42889
- [8] A. Harten, J.M. Hyman, and P.D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math., Vol. 29, 1976, pp. 292-322. Zbl0351.76070MR413526
- [9] E. Hopf, The partial differential equation ut + uux = μ uxx, Comm. Pure Appl. Math., Vol. 3, 1950, pp. 201-230. Zbl0039.10403MR47234
- [10] A.M. Il'Inand O.A. Oleinik,Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R., Vol. 120, 1958, pp. 25-28; Am. Math. Soc. Trans., Vol. 42, 1964, pp. 19-23. Zbl0082.08901MR101396
- [11] A.M. Il'Inand O.A. Oleinik,Asymptotic behavior of solutions of the Cauchy probem for some quasilinear equations for large values of time, Mat. Sbornik, Vol. 51 #2 (93), 1960, pp. 191-216. Zbl0096.06601MR120469
- [12] A.S. Kalashnikov, Construction of generalized solutions of quasilinear equations of first order without convexity conditions as limits of solutions of parabolic equations with small parameter, Dokl. Akad. Nauk S.S.S.R., Vol. 127, 1959, pp. 27-30. Zbl0100.09203MR108651
- [13] P.D. Lax, The initial value problem for nonlinear hyperbolic equations in two independent variables, Ann. Math. Studies33, Princeton U. Press1954, pp. 211-229. Zbl0057.32502MR68093
- [14] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., Vol. 10, 1957, pp. 537-566. Zbl0081.08803MR93653
- [15] T.-P. Liu, Invariants and asymptotic behavior of solutions of a conservation law, Am. Math. Soc. Proceedings, Vol. 71, 1978, pp. 227-231. Zbl0392.35041MR500495
- [16] O.A. Oleinik,On Cauchy's problem for nonlinear equations in a class of discontinuous functions, Dokl. Akad. Nauk S.S.S.R., Vol. 95, 1954, pp. 451-455. Zbl0058.32101MR64258
- [17] O.A. Oleinik, Discontinuous solutions of differential equations, Uspekhi Mat. Nauk, 12 #3 (75), 1957, pp. 3-73. Zbl0080.07701MR94541
- [18] O.A. Oleinik, Construction of a generalized solution of the Cauchy problem for a quasilinear equation of first order by the introduction of "vanishing viscosity", Uspekhi Mat. Nauk, Vol. 14 #2 (86), 1959, pp. 159-164; Am. Math. Soc. Trans., Vol. 33, 1963, pp. 277-283. Zbl0131.09101MR117426
- [19] O.A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Uspekhi Mat. Nauk, Vol. 14 #2 (86), 1959, pp. 165-170; Am. Math. Soc. Trans., (2), 33, 1963, pp. 285-290. Zbl0132.33303MR117408
- [20] O.A. Oleinik and T.D. Ventsel', The first boundary value problem and the Cauchy problem for quasilinear equations of parabolic type, Matem. Sbornik, Vol. 41, 1957, pp. 105-128. Zbl0078.27605MR86247
- [21] D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977.
- [22] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential EquationsPrentice-Hall, Englewood Cliffs, N. J.1967, Springer, New York, 1986. Zbl0153.13602MR219861
- [23] B. Keyfitz Quinn, Solutions with shocks: An example of an L1-contractive semi-group, Comm. Pure Appl. Math., Vol. 24, 1971, pp. 125-132. Zbl0206.10401MR271545
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.