# Large time behaviour of a class of solutions of second order conservation laws

Jan Goncerzewicz; Danielle Hilhorst

Banach Center Publications (2000)

- Volume: 52, Issue: 1, page 119-132
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topGoncerzewicz, Jan, and Hilhorst, Danielle. "Large time behaviour of a class of solutions of second order conservation laws." Banach Center Publications 52.1 (2000): 119-132. <http://eudml.org/doc/209049>.

@article{Goncerzewicz2000,

abstract = {% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.},

author = {Goncerzewicz, Jan, Hilhorst, Danielle},

journal = {Banach Center Publications},

keywords = {BV initial function; entropy solution of a Riemann problem},

language = {eng},

number = {1},

pages = {119-132},

title = {Large time behaviour of a class of solutions of second order conservation laws},

url = {http://eudml.org/doc/209049},

volume = {52},

year = {2000},

}

TY - JOUR

AU - Goncerzewicz, Jan

AU - Hilhorst, Danielle

TI - Large time behaviour of a class of solutions of second order conservation laws

JO - Banach Center Publications

PY - 2000

VL - 52

IS - 1

SP - 119

EP - 132

AB - % We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

LA - eng

KW - BV initial function; entropy solution of a Riemann problem

UR - http://eudml.org/doc/209049

ER -

## References

top- [BGH] M. Bertsch, J. Goncerzewicz and D. Hilhorst, Large time behaviour of solutions of scalar viscous and nonviscous conservation laws, Appl. Math. Lett. 12 (1999), 83-87 Zbl0942.35030
- [BT] Ph. Benilan and H. Touré, Sur l’équation générale ${u}_{t}=\phi {\left(u\right)}_{x}x-\psi {\left(u\right)}_{x}+v$, C. R. Acad. Sc. Paris 299 (1984), 919-922.
- [dB] E. Di Benedetto, Partial Differential Equations, Birkhäuser, 1995
- [vDdG] C. J. van Duijn and J. M. de Graaf, Large time behaviour of solutions of the porous medium equation with convection, J. Differential Equations 84 (1990), 183-203. Zbl0707.35073
- [EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press 1992. Zbl0804.28001
- [GM] G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière, Springer-Verlag 1996.
- [GR] E. Godlewski and P. A. Raviart, Hyperbolic Systems of Conservation Laws, SMAI 3/4, Ellipses-Edition Marketing, Paris 1991. Zbl0768.35059
- [IO1] A. M. Il'in and O. A. Oleinik, Behaviour of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R. 120 (1958), 25-28; Am. Math. Soc. Transl. 42 (1964), 19-23.
- [IO2] A. M. Il'in and O. A. Oleinik, Asymptotic behaviour of solutions of the Cauchy problem for some quasilinear equations for large values of time, Matem. Sb. 51 (1960), 191-216 (in Russian).
- [K] S. N. Kruzhkov, First order quasi-linear equations in several independent variables, Mat. USSR Sbornik 10 (1970), 217-243. Translation of: Mat. Sb. 81 (1970), 228-255. Zbl0215.16203
- [LSU] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI., 1968.
- [MNRR] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman & Hall, 1996. Zbl0851.35002
- [MT] M. Maliki and H. Touré, Solution généralisée locale d'une équation parabolique quasilinéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse 7 (1998), 113-133.
- [M] P. Marcati, Weak solutions to a nonlinear partial differential equation of mixed type, Differential Integral Equations 9 (1996), 827-848. Zbl0870.35058
- [Se] D. Serre, Systèmes de Lois de Conservation. I (Hyperbolicité, entropies, ondes de choc), Diderot Editeur, 1996.
- [Si] J. Simon, Compact sets in the space ${L}^{p}(0,T;B)$, Ann. Mat. Pura Appl. CXLVI (1987), 65-96. Zbl0629.46031
- [W] H. F. Weinberger, Long-time behaviour for a regularized scalar conservation law in the absence of genuine nonlinearity, Ann. Inst. Henri Poincaré 7 (1990), 407-425. Zbl0726.35009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.