Large time behaviour of a class of solutions of second order conservation laws

Jan Goncerzewicz; Danielle Hilhorst

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 119-132
  • ISSN: 0137-6934

Abstract

top
% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

How to cite

top

Goncerzewicz, Jan, and Hilhorst, Danielle. "Large time behaviour of a class of solutions of second order conservation laws." Banach Center Publications 52.1 (2000): 119-132. <http://eudml.org/doc/209049>.

@article{Goncerzewicz2000,
abstract = {% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.},
author = {Goncerzewicz, Jan, Hilhorst, Danielle},
journal = {Banach Center Publications},
keywords = {BV initial function; entropy solution of a Riemann problem},
language = {eng},
number = {1},
pages = {119-132},
title = {Large time behaviour of a class of solutions of second order conservation laws},
url = {http://eudml.org/doc/209049},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Goncerzewicz, Jan
AU - Hilhorst, Danielle
TI - Large time behaviour of a class of solutions of second order conservation laws
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 119
EP - 132
AB - % We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.
LA - eng
KW - BV initial function; entropy solution of a Riemann problem
UR - http://eudml.org/doc/209049
ER -

References

top
  1. [BGH] M. Bertsch, J. Goncerzewicz and D. Hilhorst, Large time behaviour of solutions of scalar viscous and nonviscous conservation laws, Appl. Math. Lett. 12 (1999), 83-87 Zbl0942.35030
  2. [BT] Ph. Benilan and H. Touré, Sur l’équation générale u t = φ ( u ) x x - ψ ( u ) x + v , C. R. Acad. Sc. Paris 299 (1984), 919-922. 
  3. [dB] E. Di Benedetto, Partial Differential Equations, Birkhäuser, 1995 
  4. [vDdG] C. J. van Duijn and J. M. de Graaf, Large time behaviour of solutions of the porous medium equation with convection, J. Differential Equations 84 (1990), 183-203. Zbl0707.35073
  5. [EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press 1992. Zbl0804.28001
  6. [GM] G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière, Springer-Verlag 1996. 
  7. [GR] E. Godlewski and P. A. Raviart, Hyperbolic Systems of Conservation Laws, SMAI 3/4, Ellipses-Edition Marketing, Paris 1991. Zbl0768.35059
  8. [IO1] A. M. Il'in and O. A. Oleinik, Behaviour of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R. 120 (1958), 25-28; Am. Math. Soc. Transl. 42 (1964), 19-23. 
  9. [IO2] A. M. Il'in and O. A. Oleinik, Asymptotic behaviour of solutions of the Cauchy problem for some quasilinear equations for large values of time, Matem. Sb. 51 (1960), 191-216 (in Russian). 
  10. [K] S. N. Kruzhkov, First order quasi-linear equations in several independent variables, Mat. USSR Sbornik 10 (1970), 217-243. Translation of: Mat. Sb. 81 (1970), 228-255. Zbl0215.16203
  11. [LSU] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI., 1968. 
  12. [MNRR] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman & Hall, 1996. Zbl0851.35002
  13. [MT] M. Maliki and H. Touré, Solution généralisée locale d'une équation parabolique quasilinéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse 7 (1998), 113-133. 
  14. [M] P. Marcati, Weak solutions to a nonlinear partial differential equation of mixed type, Differential Integral Equations 9 (1996), 827-848. Zbl0870.35058
  15. [Se] D. Serre, Systèmes de Lois de Conservation. I (Hyperbolicité, entropies, ondes de choc), Diderot Editeur, 1996. 
  16. [Si] J. Simon, Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. CXLVI (1987), 65-96. Zbl0629.46031
  17. [W] H. F. Weinberger, Long-time behaviour for a regularized scalar conservation law in the absence of genuine nonlinearity, Ann. Inst. Henri Poincaré 7 (1990), 407-425. Zbl0726.35009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.